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Vinegar production is a typical bioprocess in the scope of the agrifood industry. Its optimization requires
careful modeling which has so far been addressed by using mainly unstructured first principles models.
Because of the difficulties in obtaining these models, black box models, such as those used here, are
becoming more frequently used. The polynomial models developed in this work, accurately reflect the
effect of the major and typical operational variables used in industry for this process. Also, response
surfaces were used to identify the optimum operating conditions with a view to maximizing the mean

gfgx;gzg;;s fermentation rate and productivity. The followed strategy has a huge industrial interest since yields a
Modelling tool that does not only allow finding the best operational conditions depending on different criteria but
Optimisation also is useful for process control. As far as we know this is the first time that these variables have been
Acetic acid correlated in this way.

Acetobacter © 2015 Elsevier B.V. All rights reserved.
Vinegar

1. Introduction

The optimization of acetic acid fermentation as a biotech-
nological process has been the subject of much study in recent
times - particularly as regards vinegar production [1-6]. The
complex interdependence of the variables influencing growth and
activity in acetic acid bacteria [7-10] has led to the development
of mathematical models for quantifying the relationships between
the major variables. Most such models have a phenomenological

Abbreviations: (ra)est, estimated mean acetic acid formation rate (g acetic
acid (100 mLh) -1); C, wine loading rate(L min~1); E, ethanol concentration remain-
ing at the time the reactor is unloaded (% (v/v)); V, percent unloaded volume (%);
(Pa)est, estimated acetic acid production (g acetic acid h~1); (EtOHmean )est, €stimated
mean ethanol concentration (% (v/v)); (HACmean )est» €stimated mean acetic acid
concentration (% (w/v)); ([Total cells]mean )est, €stimated mean total cell concentra-
tion (cellsmL~1); ([Viable cells]mean)est, €stimated mean viable cell concentration
(cellsmL~"); (Vimean Jest, €stimated mean volume (L); HAcgna1, acetic acid concentra-
tion at the time the reactor is unloaded (% (W/Vv)); tiotal, total cycle duration (h); Vinean,
mean volume (L).
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or unstructured first principles basis [11-14] and use differential
equations to balance substrate and product concentrations, and
kinetic equations to define the influence of the different variables
[15,16]. This approach has the advantage of being valid over
broad ranges of operating conditions by virtue of its relying on
physico-chemical properties of the processes concerned. However,
it has the disadvantages that the obtained models are complex and
that their kinetic equations have to be constructed from unknown
parameters which must be estimated by applying optimization
algorithms to experimental values [17]. Also, obtaining accurate,
unambiguous estimates requires satisfying the structural and prac-
tical identifiability conditions [ 18-22]. The structural identifiability
analysis condition only depends on the mathematical structure of
the model equations, whereas the practical identifiability analysis
condition additionally considers the amount of data used to esti-
mate parameters and their quality. Checking that both conditions
are fulfilled entails using computationally complex algorithms
[23,24], which is an added disadvantage of first principles models.

On the other hand, black box models need not consider
the physico—chemical principles behind the target process [25].
Rather, these models seek the simplest possible relationships
between operational and process variables from experimental val-
ues obtained under different conditions. As a rule, black box models
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are easier to construct than phenomenological models and require
no prior identifiability analysis, so they are more practical for pro-
cess optimization and control. However, black box models are
applicable over narrower operational ranges than phenomenolog-
ical models because they constitute necessarily local approaches.

Polynomial models, which are among the most widely used
black box models [26,27], allow operational and process variables
to be correlated via linear or non-linear generalized polynomials of
variable order, but usually first or second [28,29] - the latter tend to
be more accurate and widely applicable by effect of their consider-
ing interactions between factors (operational variables). However,
they require greater numbers of experimental data to fit coeffi-
cients; also, the number of experiments needed depends on the
polynomial order, the number of factors and the number of levels
(values) used to discretize each factor range. Experimental design
is used to identify the factors most strongly influencing a process
under specific experimental conditions, minimize the effects of
uncontrolled factors (perturbations), isolate and assess the effect
of each individual factor by statistical analysis [30] and rationalize
(reduce) the number of experiments required [31]. Experimental
design allows obtaining the simplest algebraic equations used to
construct polynomial models.

The joint use of polynomial models and response surfaces
provides a powerful tool for process optimization [1,6,32], as it
facilitates identification of the optimum operating conditions of
a process considering interactions between individual influential
factors.

In this work, we exploited the advantages of these models to
construct quadratic polynomials for the process variables of acetic
acid fermentation. To this end, we used three different factors,
namely: the ethanol concentration remaining in the reactor at the
time it was unloaded, the percent unloaded volume and the reac-
tor loading rate, which are the three operational variables most
widely used by industry. As far as we know, this is the first time
that these variables have been correlated in this way. The ensuing
models were used to optimize the process via the response surfaces
of the variables and the results compared with those of previously
reported first principles models.

2. Material and methods
2.1. Raw material or substrate

The acetification substrate was white wine from the
Montilla-Moriles region, a protected designation of origin in
southern Spain [33]. The wine had an initial ethanol concentration
of 11.7 £0.3%(v/v) and an acidity of 0.2% (w/v).

2.2. Microorganisms

The inoculum used consisted of 3 L of fermentation broth from
an industrial tank in full operation (Deoleo S.A., Cérdoba, Spain).

2.3. Fermentation conditions

Experiments were conducted on a fully automated 8L Frings
reactor (Heinrich Frings GmbH & Co., KG, Bonn, Germany), details
of which can be found in previous works [14,24,34-38]. The reactor
was operated in a semi-continuous mode to facilitate assessment
of the influence of the ethanol concentration at the time it was
unloaded, the mean unloaded volume and the wine loading rate
on the fermentation rate and acetic acid production. A constant
temperature of 31 °C was used to mimic industrial conditions.

The ethanol concentration at the time of unloading ranged from
0.5 to 3.5% (v/v), the mean unloaded volume from 25 to 75% of the
final working volume from 2 to 6L and the loading rate from 0.01

Table 1
Control factors used in the Box-Behnken experimental plan and their levels.

Factor Code Level

(-1) (0) (+1)

Ethanol at unloading time, (%) (v/v) E 0.5 2 35
Unloaded volume, (%) Vv 25 50 75
Loading rate, Lmin~! C 0.01 0.035 0.06

to 0.06 Lmin~!. The air flow rate at the time the reactor reached its
final volume (8 L) was 7.5 L (hLmedium)~!.

The bioreactor was fully equipped to operate in an automated
manner, so it was loaded, unloaded and monitored via appropriate
computer software. This methodology afforded a high operational
reproducibility and exhaustive recording of data.

For estimating the mean acetification rate, the method proposed
elsewhere [35], using the variation of the ethanol concentration
over the fermentation cycle, was used.

2.4. Experimental design

We used a central composite design (viz.,, a Box-Behnken
design) to simultaneously examine the influence of all factors and
reduce the number of experiments needed as far as possible. A
total of 15 different sets experimental conditions were needed to
characterize the 3 variables considered (see Tables 1 and 2). In
any case, a huge experimental labor has been carried out; Table 2
shows the number of useful replications for each set of experimen-
tal conditions (a total number of 176). Additionally, each time the
operational conditions were modified, a variable number of adap-
tation cycles can be necessary until get repetitive results.

2.5. Analytical methods

Volume was measured by means of an EJA 110 differential pres-
sure probe (Yokogawa Electric Corporation, Tokyo, Japan).

The ethanol concentration was monitored in a continuous man-
ner by using an Alkosens® probe and an Acetomat® transducer
(Heinrich Frings GmbH & Co., KG, Bonn, Germany). The probe was
calibrated by determining ethanol with an alcohol meter [39] in
media previously obtained by steam distillation.

Acetic acid concentrations were measured by acid-base titra-
tion [39].

Total cell concentrations were determined by direct counting
in a Neubauer chamber using a light microscope, and viable cell
concentrations similarly but using a LIVE/DEAD BacLight bacterial
viability kit and the fluorescence unit of the microscope.

2.6. Mathematical methods

The optimum values of the operational variables were deter-
mined by establishing the Karush-Kuhn-Tucker (KKT) conditions
[40,41] to be fulfilled by the optimum points of a non-linear
restricted optimization problem. The problems addressed here
were defined as follows:

Max f(x1, X2, ..., Xn)
s.t. g1(X1,X2, ..., %) <0
&2(X1,X%2, ..., Xn) <0

(1)

g3(X1,X2, ..., Xn) <0

gm(X1,X2, ..., %) <0
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