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a b s t r a c t

Analytic, approximate analytic, and numerical solutions to the compact debris flight equations are
presented. Analysis shows that, after release from rest, the slope of the particle trajectory adjusts from an
initial slope of �Ω to a final slope of �

ffiffiffiffiffi
Ω

p
whereΩ is the inverse of the Tachikawa number. ForΩo1

the trajectory steepens whereas for Ω41 the path becomes less steep over the full flight distance.
However, for all values of Ω the trajectory initially steepens before adjusting to its steady trajectory
slope. The final steady straight line trajectory is shown to project back to a virtual release height that is
calculated numerically and shown to be a function of Ω. Approximate analytical solutions for the flight
distance required to achieve the final steady-state slope (�

ffiffiffiffiffi
Ω

p
) are presented and show that the

transition height is a function of Ω for small values of Ω but is independent of Ω for larger values. The
transition height is shown to be very large for a broad range of physically realistic conditions. Contour
plots are presented that summarize the change in trajectory, horizontal flight distance, horizontal and
vertical velocity, and kinetic energy as a function of vertical distance traveled and Ω.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The flight of wind-borne compact debris during severe storms
is of significant interest to the wind engineering community due
to the severe damage that can be caused by such debris upon
impact. A recent example of such damage was the destruction of a
façade of the Hyatt Hotel in down town New Orleans due to roof
gravel from an adjacent building being blown off during hurricane
Katrina. It is therefore important to understand how far a piece of
compact debris will travel for a given wind speed. The compact
debris equations of motion have long been established (Tachikawa,
1983, 1988). However, there are no general analytic solutions to
these equations so flight calculations must be done numerically
which inhibits their general use.

The compact debris flight equations are mainly used in prob-
abilistic models to assess risk that use statistical input and wind
conditions. They are of limited use in predicting the flight
dynamics of a given piece of debris as the size of the debris, the
debris initial velocity, and the ambient wind field are all unknown.
In general, the equations have been solved for a piece of compact
debris released from rest at some specified height in a steady
uniformwind field (Holmes, 2004; Baker, 2007). The goal with this
approach is to understand the behavior of the system of equations
under idealized conditions to provide a framework for interpreting
the results of more sophisticated models. This approach has been
extended to examine the role of ambient turbulence on the

particle flight path (Holmes, 2004; Karimpour and Kaye, 2012a;
Moghim and Caracoglia, 2014). Karimpour and Kaye (2012a)
showed that ambient turbulence will slightly increase the flight
distance and can be accounted for by using the Root Mean Squared
horizontal wind speed in calculations. Karimpour and Kaye
(2012a) also examined the role of input uncertainty on the debris
flight path and showed that, for some set of randomly distributed
particle sizes, using the mean particle size in flight calculations
will underestimate the mean particle flight path.

Some special cases of the debris flight equations can be solved
analytically. Holmes (2004) presented a solution for the case
where vertical air resistance is ignored. Baker (2007) showed that,
for long enough flight times, a piece of compact debris will reach a
steady velocity in which it travels horizontally at the wind speed
(U) and vertically at its terminal velocity (wT ). Therefore, provided
the flight duration is long enough that the initial adjustment to
steady-state can be ignored, the flight distance (X) for a particle
released from rest at a height (H) above the ground, can be
approximated by

X �HU=wT : ð1Þ
However, no limitations on the use of this equation, or discus-

sion of, in general, how large H must be for this to be a valid
approximation, have been presented in the literature.

The solution of the compact debris equations has implications for
a range of wind engineering applications. For example, theoretical
estimates of flight distance and velocity could allow engineers to
develop appropriate impact mitigation designs. Calculations of debris
kinetic energy can be used to develop test standards for impact
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resistant cladding. Finally, the flight path of a piece of compact debris
has implications for the scaling of wind tunnel blow-off tests up to
full scale.

The remainder of the paper is structured as follows. The
compact debris flight equations are presented in Section 2 in both
dimensional and non-dimensional form along with the solutions
for the near field and far field trajectory. The near field adjustment
to the far field steady-state trajectory and the distance required to
achieve that steady-state trajectory are discussed in Section 3. Full
numerical solutions for a very broad range of Tachikawa number
are presented graphically in Section 4. Conclusions are presented
in Section 5.

2. Model development

The two-dimensional compact debris flight equations have
been presented numerous times in the literature (Holmes, 2004;
Baker, 2007). Compact debris is any object for which all length to
width ratios are approximately one (as opposed to rod like debris
which has one long and two short dimensions and plate like debris
which has two long dimensions and one short dimension).
Additionally, compact debris has a negligible lift coefficient and
negligible rotational inertia. As such, the compact debris flight
equations can be developed from the aerodynamic drag equation
and the two dimensional equations of motion for a particle in a
gravitational field. Consider a particle moving horizontally with
velocity u and vertically with velocity wo0 (taking up as positive)
in a steady uniform wind field of horizontal velocity U and zero
vertical velocity (see Fig. 1a). The resulting drag force acts in the
direction of the relative velocity while the weight force acts
vertically downward (see Fig. 1b). Ignoring the buoyancy force
acting on the particle then the resulting equations for the time
variation of vertical and horizontal particle velocity are given by

d2x
dt2

¼ du
dt

¼ ρCDA
2m

ðU�uÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðU�uÞ2þw2

q
ð2Þ

and

d2z
dt2

¼ dw
dt

¼ ρCDA
2m

�wð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðU�uÞ2þw2

q
�g ð3Þ

where x and z are the horizontal and vertical coordinates, ρ is the
density of air, m is the mass of the particle, A is the cross sectional
area of the particle (assumed constant), CD is a drag coefficient
(assumed constant), and g is the gravitational acceleration constant.

These equations can be re-written in non-dimensional form as

d2χ
dτ2

¼ dμ
dτ

¼ 1�μ
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�μ
� �2þω2

q
ð4Þ

and

d2ζ
dτ2

¼ dω
dτ

¼ �ωð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�μ
� �2þω2

q
�Ω ð5Þ

where the non-dimensional variables are given by

m¼ u
U
;o¼w

U
; w¼ x

CDrA
2m

; ζ ¼ z
CDrA
2m

; τ¼ t
CDrUA
2m

andΩ¼ 2mg

CDrAU
2

ð6Þ
Here,Ω is proportional to the inverse of the Tachikawa number

(Holmes et al., 2006). Note that this is a slightly different non-
dimensional scheme than that used by Baker (2007) as the drag
coefficient is included in the non-dimensionalization in order to
keep the equations and resulting solutions tidier.

For a particle released from rest the initial conditions are zero
horizontal and vertical particle velocity (μ¼ω¼ 0 at τ¼ 0).
Therefore, the velocity diagram has only the horizontal wind
speed U (see Fig. 2a) and the forces acting on the particle are the
weight acting vertically down and the drag acting horizontally
(see Fig. 2b). For small times after the initial release the equations
of motion can be approximated by ignoring the particle velocity
terms, giving

d2χ
dτ2

¼ dμ
dτ

¼ 1 and
d2ζ
dτ2

¼ dω
dτ

¼ �Ω: ð7Þ

Therefore, the small time velocities are given by

μ� τ and ω� �Ωτ; ð8Þ
leading to an initial trajectory slope of

S¼ω
μ
¼ �Ω¼ � 2mg

CDρAU2 ð9Þ

equal to the initial force direction as shown in Fig. 2(b). This is
similar to the result of Baker (2007), though again with the CD
contained in the non-dimensional parameter Ω.

In the limit of large time a steady trajectory is achieved in
which the time derivatives in (4) and (5) are zero. This leads to the
result that

μ¼ 1 and ω¼ �
ffiffiffiffiffi
Ω

p
: ð10Þ

That is, the debris travels horizontally at the wind speed
(Fig. 2c). Therefore, the only drag force is in the vertical direction
and is exactly balanced by the particles weight (Fig. 2d). As such,

Fig. 1. (a) Velocity diagram for a particle showing the wind speed U, particle
velocity (u;w) and velocity of the air relative to the particle V. (b) Force diagram
showing the drag force acting in the direction of the relative velocity and the
weight force acting down.

Fig. 2. Particle velocity diagrams (a,c) and force diagrams (b,d) for a piece of
compact debris upon release (a,b) and at the large time limit steady state (c,d). The
initial trajectory slope of �Ω is shown on the force diagram (b) and the final
trajectory slope of � ffiffiffiffi

Ω
p

is shown on the velocity diagram (c).
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