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a b s t r a c t

There is an ambiguity in the original equations for the identification of flutter derivatives. The analysis in
this paper shows that, for the two degrees of freedom (2DOF) model, these derivatives in these equations
are, in fact, three-dimensional functions instead of one dimensional functions of reduced frequency.
Alternative governing equations are proposed in this paper to solve this problem. These new equations
“decouple” the aeroelastic coupling effect by approximated modeling strategy. The number of
independent aeroelastic parameters is reduced from eight to five. Nonlinear nature of the aeroelastic
coupling effect is unveiled. The nonlinear identification method is presented to retrieve the new set of
aeroelastic parameters. Wind tunnel experiments were conducted to show the effectiveness of the
newly proposed equations.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Flutter derivatives (Scanlan and Tomko, 1971) in bridge aeroelas-
ticity correspond to aerodynamic coefficients (Theodorsen, 1934) in
airfoil aeroelasticity.

In the case of thin airfoil, the shape of the structural cross
section is carefully designed to avoid the separation of flow from
the structural surface. Under the condition of small attacking
angle, the potential flow theory can be utilized and linearity of
the fluid behavior is assumed.

The bridge decks, on the other hand, has to be bluff, and cannot
be analyzed effectively by potential flow theory. It has not to date
been possible to develop analytical expressions for the flutter
derivatives from basic fluid dynamics. Wind tunnel experiments
are usually relied upon to identify these parameters. Sectional
model tests are routine practices in this area (Chen et al.,
2010; Mishra, 2006; Chowdhury and Sarkar, 2004; Zhang and
Brownjohnb, 2004; Li et al., 2003; Gu et al., 2000; Iwamoto and
Fujino, 1995; Jakobsen and Hansen, 1995; Sarkar et al., 1994).

2. The flutter derivative model and its ambiguity

2.1. The flutter derivative model

The sectional model used in wind tunnel experiments is usually
assumed to have vertical, rotational and lateral degrees of freedom

(DOFs). Two-DOF (vertical-rotational) model is commonly used.
The sectional model is assumed to rotate about the structural
elastic center (SEC). Governing equations of the vibration is thus
established as (Simiu and Scanlan, 1996):

m €hþS €αþch _hþkhh¼ Lae ð1Þ

S €hþ I €αþcα €αþkαα¼Mae ð2Þ

where h and α are the motions in vertical and rotational DOF,
respectively; m and I are the mass and moment of mass, respec-
tively; S is the static unbalance, i.e. the product of mass and the
distance separating the mass center and structural elastic center.
S equals to zero when the model is symmetric. The aeroelastic
forces in (1) and (2) are
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where Hn

i and An

i ; i¼ 1;2;3;4 are flutter derivatives; K ¼ ðð2BÞω=UÞ
is the reduced frequency; B is the half deck width; U is the wind
speed and ω is the vibration circular frequency.

The flutter derivative model is the corner stone of bridge
aeroelasticity. However, there is some ambiguity in the expressions.
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2.2. The ambiguity of the flutter derivative model

On the one hand, Eqs. (1) and (2) indicate h and α should both
be double frequency signals, otherwise, when the static unbalance
is zero (S¼0), i.e. when the model is symmetric, (1) and (2) would
have single frequency on the left hand side and two frequencies on
the right, resulting in unbalanced equations. On the other hand,
for Eqs. (3) and (4) to be physically meaningful, h and α should
both be single frequency signals. This is because flutter derivatives
are assumed to be one dimensional functions of reduced fre-
quency; they may fail to be effective if the signals associated with
them contain multi-modal components.

Suppose the translational motion, for instance, contains two
frequency components: the translational motion with the
frequency of vertical DOF, hh and the translational motion with
the frequency of rotational DOF, hα. It can be decomposed in the
following manner:

h¼ hhþhα: ð5Þ
Following the decomposition in (5), the aeroelastic forces due to h
may also be decomposed as
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It is important to note that Hn
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4ðKωhÞ are valued at reduced frequency Kωh, while Hn
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Kωα, where KωhaKωα .

What is indicated by (6) is that, Hn

1 and Hn

4 in original Eq. (3)
reflect the effect of the weighted summation of two motions of
different frequencies and amplitudes. In this case, the identified
flutter derivatives in the traditional manner will be a function of
two reduced frequencies and the ratio of amplitudes between hh
and hα. They are indeed three-dimensional functions! This is
clearly not the original intention of the flutter derivative model.
The same statement is true for other flutter derivatives as well.

However, it is not feasible, to utilize equations like (6) and (7)
for the identification of flutter derivatives, because this will results

in more parameters to be identified than the traditional case,
creating a new challenge to the identification method. The modifi-
cation of the flutter derivative model will have to take another
direction.

In the following part, we derive alternative governing equa-
tions for the bridge model on the condition that reasonable
approximations are tolerated. It can be seen the ambiguity is
partly clarified by the proposed equations.

3. Alternative governing equations for the free vibration of
bridge deck in wind

3.1. An approximated modeling strategy

In the derivation of aerodynamic coefficients (Theodorsen,
1934), wing's motion is prescribed as h¼ h0ejωt ; α¼ α0ejωt , i.e.
a coupled sinusoidal motion with h and α components. The
frequencies of vertical and rotational vibrations are the same.

However, under the operational condition of sectional model
test for bridges, it is impractical to create the motions in this way.
The initial displacement assigned to the model will always create
double frequency responses (for 2DOF model) due to the aero-
elastic coupling effect.

However, the aeroelastic coupling affects the vertical and rota-
tional motions in different ways. On one hand, both the rotational
displacement and rotational velocity have effects on the aeroelas-
tic lifting force. On the other hand, only the vertical velocity affects
the aerodynamic moment while the vertical position (displace-
ment) has no role to play in generating the aeroelastic moment.
Because there is a phase lag between the vertical velocity and the
aeroelastic moment generated by the velocity, it appears that the
moment can be expressed, under the condition of sinusoidal
motion, as a function of velocity and displacement. This does not
mean the aeroelastic moment is generated by the vertical dis-
placement. Therefore, while the aeroelastic coupling produces
both stiffness and damping effect in the response of vertical
DOF, it may only create aeroelastic damping effect in the response
of rotational DOF.

In view of this, it can be said that the vertical response due to
aeroelastic coupling is both stiffness-driven and damping-driven
while the rotational response due to aeroelastic coupling is only
damping-driven. Besides, the damping-driven responses initiate
from zero displacement and velocity condition, they take time to
build up before the triggered free vibrations die out. Therefore, it is
reasonable to assume the coupled component in rotational motion
is usually not very strong compared with the triggered rotational

Nomenclature

AhpðtÞ The Hilbert amplitude of hpðtÞ
An

i ; i¼ 1;2;3;4 flutter derivatives
B half deck width
Bs half separation between springs
C coefficient
ch_ae, cα_ae aeroelastic damping of vertical and rotational DOF,

respectively
ch_s, cα_s structural damping of vertical and rotational DOF,

respectively
D coefficient
erðtÞ aeroelastic eccentricity
hpðtÞ; hðtÞ vertical displacement measured at aeroelastic center

and structural elastic center, respectively

Hn

i ; i¼ 1;2;3;4 flutter derivatives
Iα; Io moment of inertia about aeroelastic center and struc-

tural elastic center, respectively
K the reduced frequency
kh_s, kα_s spring stiffness of vertical rotational DOF, respectively
kh_ae, kα_ae aeroelastic stiffness of vertical and rotational DOF,

respectively
Lae; Mae aeroelastic lifting force and moment, respectively
m mass
T kinetic energy
U wind speed
V potential energy
αðtÞ rotational displacement
ωhp_d; ωα_d damped circular frequency of the signal
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