# Ventricular tachycardia secondary to abandoned epicardial pacemaker lead



Chance M. Witt, MD, Samuel J. Asirvatham, MD, FHRS, Carole A. Warnes, MD, Christopher J. McLeod, MB, ChB, PhD, FHRS

From the Division of Cardiovascular Diseases, Mayo Clinic Rochester, Minnesota.

#### Introduction

Late complications from pacemaker leads are infrequent. The majority of lead-related issues, such as dislodgment and perforation, occur around the time of implant. Rarely, *arrhythmias* are triggered by the physical presence of the lead. We present the case of a patient with recurrent ventricular tachycardia (VT) precipitated by positional change and specific movements, and associated with a pacing lead placed 3 decades earlier.

### Case report

A 53-year-old man with congenitally corrected transposition of the great arteries presented with recurrent syncope and implantable cardioverter-defibrillator (ICD) shocks secondary to episodes of VT despite antiarrhythmic medications. Before this, he had been relatively asymptomatic until age 20 years. At that time, he underwent ventricular septal defect repair. An epicardial pacing lead was also placed prophylactically at that time but was later abandoned. He remained asymptomatic until age 43 years, when he was noted to have severe systemic atrioventricular valve regurgitation requiring valve replacement surgery. The abandoned epicardial lead was partially dissected free during the surgery but was intentionally not removed because of dense adhesions. Two years later, he underwent placement of a dualchamber endocardial pacemaker for high-grade AV block. Several years later, the device was upgraded to a transvenous ICD because of symptomatic episodes of sustained monomorphic VT.

The episodes of VT increased in frequency and were associated with presyncope, syncope, and appropriate ICD therapies. Twelve-lead Holter recordings showed runs of nonsustained monomorphic VT with left bundle

**KEYWORDS** Epicardial pacemaker lead; Ventricular tachycardia; Ablation; Congenital heart disease

**ABBREVIATIONS ICD** = implantable cardioverter-defibrillator; **VT** = ventricular tachycardia (Heart Rhythm Case Reports 2015;1:126–129)

Address reprint requests and correspondence: Dr. Christopher J. McLeod, Division of Cardiovascular Diseases, Mayo Clinic, 200 1st St SW, Rochester, MN 55905. E-mail address: mcleod.christopher@mayo.edu.

morphology, originating from the inferior aspect of the heart and strongly positive in lead I. Precordial transition was noted at lead V<sub>4</sub>. The maximum deflection index was measured at 0.48. Several antiarrhythmic medications failed to prevent these episodes, and the decision was made for ablation of the VT. At his initial ablation, VT was not inducible using standard programmed ventricular extrastimulation with and without isoproterenol. Using a pace-map approach, an empiric substrate-based ablation was undertaken based on the morphology from 12-lead Holter monitoring (Figure 1). A discrete area of diseased myocardium in the inferior septum of the morphologic left ventricle inferior to the ventricular septal defect patch was thought to be the culprit area. However, a 12/12 pace-map could not be identified. Linear ablation was performed there to the tricuspid valve. This particular ablation was associated with some initial improvement in symptoms as well as a reduction in ventricular events as recorded by the patient's ICD. However, 3 after this ablation, the patient had recurrence of VT, syncope, and ICD shocks. The patient noted that he could consistently provoke these episodes with jumping or straining.

A repeat electrophysiologic study was performed, and again no ventricular arrhythmia could be induced. During the procedure, the patient was awakened and asked to perform a Valsalva maneuver. This reproducibly triggered the clinical VT. The clinical arrhythmia was found to be self-terminating and focal in nature. The source was mapped to the inferior aspect of the subpulmonic morphologic left ventricle. Substrate mapping in this area showed entirely normal myocardial characteristics. Voltage (>5 mV) was present with no evidence of electrogram fractionation or mid-diastolic potentials. The earliest ventricular electrogram was identified to be 24 ms ahead of the QRS onset, and no prepotential was seen (Figures 2 and 3). Importantly, this earliest site was noted to be exactly opposite the abandoned screw-in epicardial lead. The pace-map morphology from this area was found to be an 11/12 match compared with the clinical VT, and the VT was provoked with Valsalva maneuver. Despite these features, long-duration, empiric ablation lesions delivered from several different angles using high power (40-45 W) and an irrigated-tip catheter were required (Figure 4). Also, in an

#### **KEY TEACHING POINTS**

- Epicardial device leads can be a trigger for ventricular arrhythmia, even if they have been quiescent for many years.
- Epicardial device leads can cause ventricular arrhythmia without any obvious endocardial substrate abnormalities.
- Unusual provocation maneuvers should be considered outside of the standard ventricular pacing protocols, isoproterenol, and epinephrine. This should be guided by a careful history identifying unconventional triggers.

attempt to achieve a deeper lesion toward the epicardial surface, a nonirrigated catheter was used to deliver 80 W to the same area. After this set of lesions, the VT could not be reinduced with Valsalva provocation. Premature ventricular contractions were still present from the site with deep

Valsalva, yet conversion to an epicardial approach was decided against given the patient's history of 2 prior sternotomies and known dense adhesions. The patient has remained free of VT and ICD therapies since the ablation (2 years).

#### **Discussion**

This case demonstrates that ventricular arrhythmias can be provoked by screw-in epicardial leads placed many years earlier. This rare scenario has been described for *endocardial* pacing and defibrillator lead tips<sup>2–4</sup> as well as secondary to the lead shaft itself. <sup>5–7</sup> It also has been documented with fractured and migrated *epicardial* leads in the setting of perforation. <sup>8,9</sup> In this case, the lead itself did not appear to have any abnormality, and there was no evidence of perforation on prior computed tomographic imaging. In previous similar cases, however, the offending lead was removed, which was not necessary in our patient, demonstrating that endocardial ablation was sufficient to modify the peri-lead substrate and result in noninducibility.

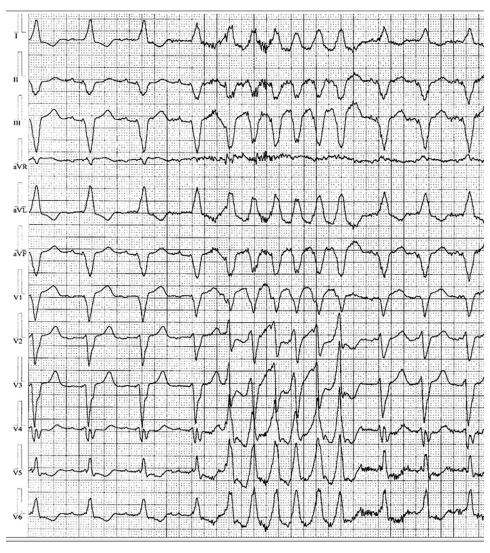



Figure 1 Twelve-lead Holter monitor recording showing the clinical ventricular tachycardia.

## Download English Version:

# https://daneshyari.com/en/article/2925767

Download Persian Version:

https://daneshyari.com/article/2925767

<u>Daneshyari.com</u>