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a b s t r a c t

For many unsteady processes (e.g. turbulent wind, electricity demand, traffic, financial markets, space
physics, etc.) data is only available at discrete points, be it due to data storage or data gathering lim-
itations. However, derived forms of that data are often used in further studies where the discretization
may be different from the discretization of the original data. This paper addresses the question of how to
obtain values between discrete data points, for example, when sampling turbulent wind. Linear inter-
polation is often the standard answer. Yet, it is shown that this is a poor choice for unsteady processes
where the sample step size is significantly larger than the fluctuation scale. An alternative employing
probability density functions of data increments is suggested. While this new method does not require
much more effort than linear interpolation, it yields significantly more accurate results. Unsteady wind is
used to exemplify this: turbulent wind speeds on a (rotating) wind turbine blade are synthesized from a
coarse data grid via the introduced method of velocity increments. Thus the superiority of the presented
approach over linear interpolation is demonstrated – with important implications for blade load and
power output computations.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In engineering application we often have to deal with unsteady,
highly fluctuating processes. e.g. turbulent atmospheric wind,
urban electricity demand, local traffic volume, financial markets,
space physics, etc. Due to limitations in data handling and/or
storage capacity often a full time series of the process under
investigation is not available. Instead, only incomplete data sets at
discrete points are at hand. However, these data sets are regularly
used as input for further analysis and often data values between
two sample points are needed. To solve this task, interpolation
based on deterministic, continuous, and possibly multivariate
algebraic or sometimes trigonometric polynomials, with the
number of variables depending on the considered problem (one or
several interpolation dimensions), is the common solution (Phil-
lips, 2003; Steffensen, 2006; Mastroianni and Milovanovic, 2008).
Linear interpolation is the most basic (and very widely used)
example of this kind of interpolation in a one-dimensional space.

However, if the interpolation time and/or length scales are
significantly larger than the signal's fluctuation scale, these inter-
polation schemes become erroneous. In fact, in these cases

conventional interpolation with continuous functions acts as a
low-pass filter. Thus it results in a reduced variance σ2 of the
interpolated signal, i.e. a reduced likelihood of extreme events, and
consequently a distorted spectrum. Fig. 1 illustrates this. A set of
N¼100 data points, labelled ‘original process’, is considered as a
generic example of some unsteady, highly fluctuating process with
a short fluctuation scale. The N points were generated indepen-
dently and standard normal distributed (variance σ2 ¼ 1). If this
process is reconstructed via linear interpolation from a set of ten
equidistant sample points, much further apart than the fluctuation
scale, the resulting process (labeled ‘interpolated’) is obviously
considerably smoother, and the signal variance drops to
σ2 ¼ 0:67.1 Clearly this results in an error when the interpolated
data set is used in further analysis.

Although a simple Gaussian process was used here for illus-
tration, linear interpolation obviously has the same effect on var-
ious kinds of weakly correlated processes with short fluctuation
scales. Switching from linear to higher order interpolation meth-
ods might mitigate these effects and potentially even conserve the
statistical moments (see e.g. Mastroianni and Milovanovic's dis-
cussion on moment-preserving approximation, Mastroianni and
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1 For clarity only a short process is shown in Fig. 1. However, to achieve
statistically stable results N⪢100 data points were considered.
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Milovanovic, 2008). However, this will not solve the problem in
principle, because these methods still use continuous functions,
which lead to a strongly correlated result not adequate for highly
fluctuating processes.

To overcome this limitation (Barnsley, 1986; Barnsley and
Harrington, 1989) introduced generalized polynomial interpola-
tion. This method is based on fractal functions and tailored for
interpolating highly “wriggly” (Barnsley, 1986) functions, such as
the elevation profiles in mountain ranges, stock-market indices, or
the profile of cloud tops. However, the method lacks flexibility
concerning conditions on the interpolation points and is mathe-
matically rather involved (Bouboulis, 2012). Hence, even 30 years
after its introduction fractal interpolation is not used widely in the
engineering community (Navascués et al., 2014), while linear
interpolation remains the default method.

To limit the scope of this paper, we focus on wind turbine
engineering. Here, linear interpolation certainly is the most com-
mon strategy to obtain local blade inflow velocities from a tur-
bulent wind field pre-computed from an industry standard spec-
trum. For example, the two major wind turbine simulation tools,
FAST (Jonkman and Buhl, 2005) and GH Bladed (Bladed, 2012),
employ piecewise linear interpolation to map from discrete wind
speeds on a regular spatial grid to blade-local velocities. Based on
Taylor's frozen turbulence hypothesis (see e.g. Panofsky and Dut-
ton, 1984) these tools interpolate local apparent wind speeds lin-
early onto the rotating blades at each time step, while an a priori
computed block of discrete frozen wind is stepped through the
rotor disc. However, as just discussed in general (cf. Fig. 1), for a
highly unsteady processes (with short correlation scales) such as
turbulent wind, this approach can introduce a significant error
into the statistical properties of the data set.

The wind velocity time record of turbulent wind in the atmo-
spheric boundary layer can be interpreted as a stochastic field.
Here the cross-correlation C is the indicator of what we called
fluctuation length scale in the general case above. For the wind
speed signals at any two points Pi and Pj the cross-correlation C is
defined via the cross and auto spectrum of the two signals, Sij and
Sii, respectively (Burton et al., 2011):

Cðf ;ΔrÞ ¼ jSijðf ;ΔrÞj
Siiðf ÞSjjðf Þ

ð1Þ

Obviously C is a function of the signal frequency component f as
well as of the distance Δr between Pi and Pj. The commonly used
wind turbine design standard IEC 61400-1, Edition 3 gives an
empirical approximation equation for Cðf ;ΔrÞ. The values decay
quickly with increasing Δr, e.g. for 10 m/s wind speed
Cðf ¼ 1 Hz;Δr¼ 2 mÞ ¼ 0:091, and Cðf ¼ 1 Hz;Δr¼ 5 mÞ ¼ 0:024.
Hence, even for small distances linear interpolation between
neighboring wind speeds means averaging two weakly correlated

events and thus smoothing the data. The consequences are as
discussed above (Fig. 1).

Veers (1988) was already aware of this loss of variance. Based
on the cross-correlation function between the two support points
of given data he derived an analytical expression for the resulting
variance error. As a remedy he suggests without further details to
add white noise to the interpolated data to recover the lost var-
iance. Although this method can restore the desired variance it
distorts the power spectrum by neglecting auto-correlation—an
important characteristic for wind speed data and other physical
processes.

A better method, which is based on stochastic increments and
preserves both the signal's variance and spectrum, will be intro-
duced in the next section. Rather than deriving yet another
mathematically rigorous but practically too complicated inter-
polation theory, our goal was to devise a simple engineering
method that provides a solution to the interpolation problem and
an improvement over linear interpolation as currently used in
wind turbine engineering, but without digging too deep into
probabilistic math.

The resulting method will be presented for the one dimen-
sional case first in general (Section 2.1), such that it can be easily
transferred to any unsteady, weakly correlated/highly fluctuating
(one dimensional) process in any field. Section 2.2 will provide a
graphic application example: the method will be extended to
higher dimensions and applied to a specific interpolation problem
in wind turbine design. Results will be presented in Section 3, and
compared against linear wind interpolation, the current status-
quo, which is used as a baseline case here.

2. A new interpolation strategy: stochastic increment
interpolation

While linearly interpolating (as well as interpolation based on
continuous functions in general) does not always yield ‘good’
results, reducing the interpolation length down to the correlation
length through finer spacing of known support points, or even
obtaining the whole unsteady process at each required point from
its fundamental statistical properties (e.g. probability density
function, spectrum, spatial and temporal correlation, etc.) is often
too tedious (Rai et al., 2015). For turbulent wind, for example, the
computational effort for simulating the field rises with the fourth
power of the number of grid points (Bladed, 2012). Moreover, the
location of required inter-grid points is often not known a priori.
Hence some kind of interpolation is inevitable. As an alternative to
linear interpolation the use of data increments is suggested. This
section will first outline the method in general. Subsequently we
apply it to the specific example of wind interpolation.
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Fig. 1. Comparison of a generic highly unsteady process and the resulting data set after interpolation between discrete sample values.
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