STATE OF THE STATE

Contents lists available at ScienceDirect

## International Journal of Cardiology

journal homepage: www.elsevier.com/locate/ijcard



# Relative dose and vascular response after drug-eluting stent implantation: A dosimetric 3D-intravascular ultrasound study



Hideki Kitahara, Katsuhisa Waseda, Ryotaro Yamada, Kenji Sakamoto, Paul G. Yock, Peter J. Fitzgerald, Yasuhiro Honda \*

Division of Cardiovascular Medicine, Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States

#### ARTICLE INFO

Article history: Received 15 June 2015 Received in revised form 19 November 2015 Accepted 22 November 2015 Available online 30 November 2015

Keywords:
Drug-eluting stent
Intravascular ultrasound
Coronary artery disease

#### ABSTRACT

*Background:* In drug-eluting stents (DESs), the theoretical drug dose exposed to the vessel wall per stent surface area may vary due to the fixed loading dose and differences in the stent surface area once expanded in varying vessel sizes. The aim of this study was to evaluate the potential effects of different dose intensities, as estimated by 3D-IVUS dosimetry, on vascular response after DES implantation.

Methods: Follow-up (6–9 months) 3D-IVUS was performed in 840 coronary lesions treated with a single DES of the following types: sirolimus (SES, n = 148), paclitaxel (PES, n = 162), Endeavor zotarolimus (E-ZES, n = 233), Resolute zotarolimus (R-ZES, n = 147), and everolimus (EES, n = 150). Volume index (volume/length, mm³/mm) was obtained for vessel, lumen, plaque, stent, and neointima. In each lesion, exposed dose intensity was calculated as known loading dose divided by measured luminal surface area of the stented segment. Lesions were divided into tertiles based on the exposed dose intensity: high, medium, and low dose groups. Results: The exposed dose intensity ranged 0.74–1.76  $\mu$ g/mm² for SES, 0.41–1.18  $\mu$ g/mm² for PES, 0.71–1.57  $\mu$ g/mm² for E-ZES, 0.72–1.63  $\mu$ g/mm² for R-ZES, and 0.40–0.99  $\mu$ g/mm² for EES. All types of DES showed no significant difference in neointimal hyperplasia among the 3 groups, except that E-ZES showed significantly less neointimal hyperplasia in the high dose group.

Conclusions: Detailed 3D-IVUS revealed significant lesion-to-lesion variability in dose intensity exposed to the vessel wall following DES implantation. However, the major types of DES appear to yield equally effective neointimal suppression, despite the varying dose intensity, except for E-ZES.

© 2015 Elsevier Ireland Ltd. All rights reserved.

#### 1. Introduction

Many types of drug-eluting stents (DESs) have been developed and tested in human clinical trials and have demonstrated significant reduction of clinical and angiographic restenosis as well as target lesion revascularization (TLR) compared with bare-metal stents. Each component of the DES, including platform, drug, or polymer, is associated with acute to long-term results. To date, every DES has been approved with only one or two types of stent design with a stent diameter of 2.25 to 4.0 mm. The theoretical drug dose exposed to the vessel wall per stent surface area may vary due to the fixed loading dose and differences in the stent surface area once expanded in varying vessel sizes. Generally, when the same stent design and drug dose are used for different vessel diameters, smaller target vessel dimensions may result in relatively higher dose exposure. For example, when 2.5 mm and 4.0 mm Endeavor

zotarolimus-eluting stents (E-ZES) are expanded nominally, the theoretical exposed drug dose per stent surface area of the 2.5 mm E-ZES is 1.6 times as much as that of the 4.0 mm E-ZES because of the same loading dose (Fig. 1). On the other hand, smaller target vessel dimensions have been reported as an independent predictor of restenosis and repeat revascularization after DES implantation [1–3]. Although there have been many clinical studies investigating the impact of different loading doses on neointimal hyperplasia in DES [4–9], there are few reports focused on the relationship between local drug dose intensity and vascular response after DES implantation. Thus, the aim of this study was to evaluate the potential effects of different theoretical dose intensities, as estimated by three-dimensional intravascular ultrasound (3D-IVUS) dosimetry, on vascular response after DES implantation.

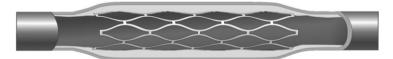
#### 2. Methods

#### 2.1. Study population

The original study data were pooled at both patient and lesion levels from 11 DES trials: SIRIUS [10], SVELTE [11], SIRIUS 2.25 [12], Zomaxx I

<sup>\*</sup> Corresponding author at: Division of Cardiovascular Medicine, Stanford University Medical Center, 300 Pasteur Drive, Room H3554, Stanford, CA 94305, United States. *E-mail address*: crci-cvmed@stanford.edu (Y. Honda).

| Stent Diameter |         | SES                | PES                | E-ZES<br>/R-ZES | EES                |
|----------------|---------|--------------------|--------------------|-----------------|--------------------|
| 0              | 2.25 mm | 8.4 ± 0.3<br>μg/mm |                    |                 |                    |
|                | 2.5 mm  |                    | 6.5 ± 0.2<br>μg/mm | 10<br>μg/mm     | 4.7 ± 0.1<br>μg/mm |
|                | 2.75 mm |                    |                    |                 |                    |
|                | 3.0 mm  |                    |                    |                 |                    |
|                | 3.5 mm  | 9.8 ± 0.3<br>µg/mm |                    |                 | 6.5 ± 0.2<br>µg/mm |
|                | 4.0 mm  |                    |                    |                 |                    |

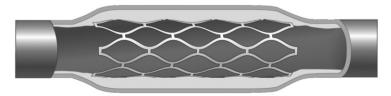

Fig. 1. The varieties of stent diameter and loading drug dose on each stent type. Drug dose is represented as a dose-per-length, calculated as an amount of loading drug dose divided by its stent length. Because the dose-per-length has a slight variety in the same diameter of the stent according to various stent lengths, the values are expressed as mean  $\pm$  SD, except that E-and R-ZES have uniform dose-per-length despite various stent lengths. The fields of unused stent sizes in the present study are shaded.

[13], Zomaxx II [13], ENDEAVOR III [14], ENDEAVOR IV [15], SPIRIT III [16], SPIRIT III Japan [16], RESOLUTE FIM [17], and RESOLUTE US [18]. The study design and 6- to 9-month results have been previously reported. From these studies, the results of 3D-IVUS analysis from patients meeting the following criteria were pooled: 1) patients with stable or unstable angina who had undergone successful treatment

with a single sirolimus- (Cypher®, Cordis, Miami, FL: [SES]), paclitaxel- (Taxus® Express<sup>2</sup>™, Boston Scientific, Natick, MA: [PES]), zotarolimus- (Endeavor®, Medtronic, Santa Rosa, CA: [E-ZES], Resolute®, Medtronic: [R-ZES]), or everolimus- (XIENCE V®, Abbott Vascular, Santa Clara, CA: [EES]) eluting stent with a stent diameter between 2.25 to 4.0 mm using standard stent implantation techniques;

An example of stent expanded to a smaller diameter:

Stent size: 2.5x18 mm, total mounted dose: 180 µg




IVUS measurement result:

Stent VI:  $4.4 \text{ mm}^3$ /mm, average stent diameter: 2.4 mm, stent length: 17.2 mm Measured luminal surface area of the stented segment =  $\pi \times 2.4 \times 17.2 = 128.4 \text{ mm}^2$  Calculated dose intensity =  $180 \mu \text{g} / 128.4 \text{ mm}^2 = 1.40 \mu \text{g/mm}^2$ 

An example of stent expanded to a larger diameter:

Stent size: 3.5x18 mm, total mounted dose: 180 µg



IVUS measurement result

Stent VI: 11.3 mm³/mm, average stent diameter: 3.8 mm, stent length: 17.4 mm Measured luminal surface area of the stented segment =  $\pi$  x 3.8 x 17.4 = 207.1 mm² Calculated dose intensity = 180  $\mu$ g / 207.1 mm² =  $\boxed{0.87 \ \mu\text{g/mm}^2}$ 

Fig. 2. Examples of differences in exposed dose intensity The exposed dose intensity can differ considerably from lesion to lesion.

### Download English Version:

# https://daneshyari.com/en/article/2928688

Download Persian Version:

https://daneshyari.com/article/2928688

<u>Daneshyari.com</u>