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a b s t r a c t

This study re-evaluates the performance of some approximate combination rules used in practice for
estimating the mean extremes of linearly combined correlated wind load effects. The Turkstra's rule and
its variants are focused, which are also often referred to as the “coincident action” or “companion action”
methods and have been widely applied to the combinations of wind loads and responses as well as other
dynamic responses. The probability distributions of estimations from the Turkstra's rule and its variants
are derived, which permit the assessment of their performance for various correlated responses through
analytical formulations rather than response time history samples. The analytical formulations and the
performance of the Turkstra's rule and its variants are also validated using simulated response time
histories of a high-rise building with coupled three-dimensional mode shapes. This study reemphasizes
the difference in the correlation coefficients of wind loads and wind-excited responses, and highlights
the importance of response correlation coefficient (both the value and sign) for the estimations of
extremes of resultant response and its absolute value. The results illustrate that the approximate
combination rules can considerably over- or underestimate the extremes of combined responses
depending on the ratio and correlation coefficient of the response components. The results of this
study help in better understanding the effectiveness and limitations of the approximate combination
rules used in current practice.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Assessment of building performance to strong winds requires
estimations of multiple important responses, which can be given as
linear or nonlinear combinations of response components in
principle directions in terms of alongwind, crosswind and torsional
responses. One example of the linear response combinations is the
bending normal stress of a column member which is the sum of the
stresses caused by bending moments in two translational principle
directions. One example of nonlinear response combinations is the
vectorial summation of building accelerations where the magnitude
of acceleration at a given building floor location is arrived at as
square-root-of-sum-of-square (SRSS) of accelerations in two trans-
lational directions. In engineering practice, it is often desired to
estimate the extremes (peaks) of these resultant responses directly
from the extremes of response components according to some
combination rules.

In the case of linear combinations, the standard deviation (STD)
of a resultant response is accurately calculated from the STDs of the
response components using complete quadratic combination (CQC)

rule (Der Kiureghian, 1980), where the correlation coefficient of
response components plays an important role and needs to be
adequately quantified. The CQC rule reduces to SRSS rule when the
response components are uncorrelated. The CQC rule can be
approximately extended to the estimation of mean extreme of
resultant response from the mean extremes of response compo-
nents under the presumption that the peak factors for the response
components and resultant response are not very different. This
assumption is generally acceptable when responses are Gaussian
processes, while it can result in a considerable error when response
processes are non-Gaussian (Gong and Chen, 2014).

Although the CQC rule is sufficiently accurate for linearly
combined responses, simplified combination rules are often used
in design codes and standards. For instance, the 40% and 75% rules
are often used to replace the SRSS rule. The Turkstra's rule
(Turkstra, 1970) and its modified or extended versions (variants)
have also been widely used in practice where the extreme of one
response component and the simultaneous values of other com-
ponents at the point-in-time are used for combination. These rules
are also often referred to as the “coincident action” or “companion
action” methods. These rules are under the assumption that the
extreme of resultant response occurs precisely when one of
the component processes takes its extreme value. The original
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Turkstra's rule was intended for the combination of independent
load effects. The underestimation of the Turkstra's rule has been
pointed out in the literature (e.g., Naess and Røyset, 2000). Naess
and Røyset (2000) examined two variants of Turkstra's rule for
combinations of dependent load effects. A modified combination
scheme using multiple points-in-time based on response time
history samples was suggested in Yeo (2013), while it sacrifices the
advantage of using simplified combination rules such as the
Turkstra's rule.

A number of studies concerning the linear combinations of
alongwind, crosswind and even torsional wind load effects have
been reported in the literature (Melbourne, 1975; Vickery and
Basu, 1984; Solari and Pagnini, 1999; Tamura et al., 2000, 2001,
2003, 2008; Bartoli et al., 2011; Tamura et al., 2014). Tamura et al.
(2000, 2001, 2003, 2008) carried out comprehensive investiga-
tions on the combinations of the maximum value of one of the
wind force components with two other simultaneously recorded
force components for low- and middle-rise buildings using pres-
sure measurement data. A similar study on the wind load
combinations following the basic idea of Turkstra's rule has also
been extended to high-rise buildings (Tamura et al., 2014). Bartoli
et al. (2011) discussed the quasi-static combination of wind loads
using a copula-based approach for modeling the joint probability
distributions of extremes of load components. ASCE 7-10 (2010)
presents relative simple load combinations for buildings, where
75% of alongwind load are simultaneously applied in both along-
wind and acrosswind directions, while torsional load can also be
included when there are eccentricities. Two different procedures
are presented in AIJ-RLB-2004 (AIJ, 2004): one for low- and middle-
rise buildings, and another for high-rise buildings (Tamura et al.,
2014; Asami, 2000). In some practice (SOM, 2004), the response in
one primary direction with a target mean recurrence interval (MRI)
was combined with a response in another direction having a
reduced MRI, while the actual MRI of such a combination is
not clear.

This study re-evaluates the performance of some approximate
combination rules used in practice for estimating the mean
extremes of linearly combined resultant wind load effects. The
probability distributions of estimations from the Turkstra's rule
and its variants are derived, which permit the assessment of their
performance for various correlated responses through analytical
formulations rather than response time history samples. The
analytical formulations and the performance of the Turkstra's rule
and its variants are also validated from time domain response
simulations of a high-rise building with coupled 3D mode shapes.
This study reemphasizes the difference in the correlation coeffi-
cients of wind loads and wind-excited responses, and highlights
the importance of response correlation coefficient (both the value
and sign) for the estimations of extremes of resultant response and
its absolute value. The results of this study illustrate the effective-
ness and limitations of the approximate combination rules used in
current practice.

2. Extreme value distribution and peak factor of a Gaussian
process

The cumulative distribution function (CDF) of extreme value of
a zero-mean Gaussian process R(t) over a time duration T is given
as follows under the Poisson assumption of crossings:

FrmaxðrÞ ¼ PrðRmaxrrÞ ¼ exp �ν0T exp � r2

2σ2
r

� �� �
ð1Þ

where ν0 ¼ σ _r=ð2πσrÞ is the mean upcrossing rate at the zero-
mean level; σr and σ _r are the STDs or root-mean-square (RMS)

values of R(t) and _RðtÞ ¼ dRðtÞ=dt, respectively; r is the response
level; and T is the duration of time.

The p-fractile value of the extreme, i.e., FrmaxðrpmaxÞ ¼ p, is then
calculated as

rpmax=σr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln½ν0T=lnð1=pÞ�

q
ð2Þ

When the extreme value distribution is approximated as a Type
I Gumbel distribution, the mean extreme corresponds to p ¼ 57%.
The peak factor is then calculated as gr ¼ rpmax=σr with p ¼ 57%.

Davenport (1964) developed the following closed-form formu-
lation for the peak factor:

gr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 lnðν0TÞ

p
þ 0:5772ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 lnðν0TÞ
p ð3Þ

Vanmarcke (1972, 1975) introduced an improved model for
very narrow band processes by taking into account the crossing
clustering. The CDF of the extreme is given as

FrmaxðrÞ ¼ PrðRmaxrrÞ ¼ exp �ν0T exp � r2

2σ2
r

� �
ϕðrÞ

� �
ð4Þ

ϕðrÞ ¼ ½1�expð�
ffiffiffiffiffiffi
2π

p
δ1:2r=σrÞ�

½1�expð�r2=2σ2
r Þ�

ð5Þ

and the p-fractile value of extreme is approximated as

rpmax=σr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 lnfrp½1�expð�

ffiffiffiffiffiffi
2π

p
δ1:2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 lnrp

q
Þ�g

r
ð6Þ

where rp ¼ ν0T=lnð1=pÞ, δ is the bandwidth parameter and is
defined as

δ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�λ21=ðλ0λ2Þ

q
ð7Þ

and λn is n-th moment of the process power spectral density (PSD)
function Sr(f):

λn ¼
Z 1

0
ð2πf ÞnSrðf Þ df ð8Þ

When the extreme value of jRðtÞj is concerned, ν0 and
ffiffiffiffiffiffi
2π

p
δ1:2

in the proceeding formulations related to the single-barrier cross-
ing, i.e., B-crossing, should be replaced by 2ν0 and

ffiffiffiffiffiffiffiffiffi
π=2

p
δ1:2,

respectively, for the double-barrier crossing, i.e., D-crossing.

3. Complete quadratic combination (CQC) rule

In the following, the resultant response from a linear combina-
tion of two dynamic responses is considered, while the discussion
can be readily extended into combinations of more than two
response components. Any linear combination of two responses
can be represented as a sum of two responses without loss of
generality. The notation used in this study is based on using capital
letters for random variables or processes and lower case letters for
deterministic quantities or “dummy” values of these random
terms. Consider the resultant response R(t) given as a sum of
R1ðtÞ and R2ðtÞ as
RðtÞ ¼ R1ðtÞþR2ðtÞ ð9Þ

The STD or RMS value of R(t) is calculated as

σr ¼ σ2
r1 þσ2

r2 þ2ρ12σr1σr2

� �1=2
ð10Þ

and the mean extreme of R(t) is accordingly determined as

rmax0 ¼ grσr � r21max0þr22max0þ2ρ12r1max0r2max0
	 
1=2 ð11Þ

where σr1 and σr2 are the RMS values of R1ðtÞ and R2ðtÞ, respec-
tively; and ρ12 is the correlation coefficient between R1ðtÞ and
R2ðtÞ; rmax0 ¼ grσr , r1max0 ¼ gr1σr1 and r2max0 ¼ gr2σr2 are the mean
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