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a b s t r a c t

A low-dimensional model based on the Volterra series is utilized to simulate nonlinear bluff-body
aerodynamics. The linear and nonlinear outputs of the aerodynamic system are extracted step by step
through a peeling-an-onion analogy. The physical significance of aerodynamic nonlinearities is high-
lighted during the development of a low-dimensional model. The parameters (kernels) of the low-
dimensional model are identified based on impulse functions, which offer a significant computational
advantage over the full-order models, e.g., a computational fluid dynamics (CFD)-based scheme. The
capability of the proposed low-dimensional model in simulating the nonlinear bluff-body aerodynamic
effects is first investigated by three nonlinear examples described by phenomenological models, which
represent a gust-induced response, a vortex-induced vibration and a coupling interaction of buffeting
and flutter of long-span cable-supported bridges. This is followed by a CFD-based example, representing
the motion-induced nonlinear effects on a rectangular bluff body, to further examine and discuss the
efficiency and fidelity of the simulation of the low-dimensional model for the nonlinear bluff-body
aerodynamics. The Volterra series-based low-dimensional model has shown a remarkable potential for
applications to nonlinear bluff-body aerodynamics. The two-dimensional applications discussed in this
study could be immediately extended to three-dimensional cases by appropriately accounting for the
spanwise correlation of aerodynamic effects.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Wind-induced effects on structures with bluff cross-sections,
governed by the Navier–Stokes equations, are not adequately
represented by conventional linear analysis framework established
by Davenport (e.g., Davenport (1962)) and Scanlan (e.g., Scanlan
and Tomko (1971)). This shortcoming is becoming important for
contemporary structures, as their increasing span-lengths and
heights make them more sensitive to nonlinear and unsteady
aerodynamic/aeroelastic load effects. Significant nonlinear fea-
tures concerning gust-induced and motion-induced forces on
modern bridge decks, observed in wind tunnel studies recently,
have placed increasing importance on addressing the nonlinear
effects in the design of long-span bridges for wind (Diana et al.,
2010; Wu and Kareem, 2013a). It is often believed that non-
linearity usually has favorable effects on the aerodynamic systems
due to limit-cycle oscillations. On the other hand, nonlinearity also

could result in unfavorable effects on the aerodynamic systems
(Dowell and Tang, 2002).

The full-order representation of nonlinear bluff-body aero-
dynamics needs to recourse to solving nonlinear convected-wave
equations of Navier–Stokes model, which involves the order of
O(106) or more degrees of freedom (Dowell and Hall, 2001). In
light of the high computational efficiency and ability to retain
essential physics, the low-dimensional models have been rapidly
developed in this context over the last several decades (e.g.,
Dowell and Hall (2001), Silva et al. (2001), Raveh (2001) and Lucia
et al. (2004)). For bridge aerodynamics, these models can be
employed during the preliminary deck design selection process.
Once the design has been finalized one goes to full-blown CFD
and/or wind tunnel testing to confirm the estimated behavior or to
enhance estimates. There are a number of low-dimensional
models which have been successfully applied in engineering, such
as the describing function, trajectory piece-wise linearization,
artificial neural network (ANN), autoregressive moving average
(ARMA), Volterra series and proper orthogonal decomposition
(POD). Improvement in the efficiency and robustness of these low-
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dimensional models is a topic of cutting-edge research in aero-
dynamics community, especially in the aerospace field (e.g., Silva
(2005), Amsallem et al. (2012) and Balajewicz et al. (2013)). The
essential feature of most of these applications to the aerospace
field is that the governing equations of full-order representation
are characterized by the inviscid equations (potential or Euler
equations). However, for the nonlinear unsteady bluff-body aero-
dynamics such as the bridge aerodynamics, the more complex
Navier–Stokes equation is necessary to be invoked.

In this study, the Volterra series-based model (linear and
nonlinear convolutions) is utilized, through a peeling-an-onion
analogy, to extract the linear and nonlinear user-defined outputs
(forces, pressures, or responses) from the governing equations of
the bluff-body aerodynamic system step by step. Volterra series
naturally arises from the analysis methods developed to solve the
nonlinear ordinary differential equations (ODEs) (Tricomi, 1957).
Actually, the implicit operations in terms of the ODEs can be
transferred into explicit operations in terms of convolutions
(Dowell and Hall, 2001). On the other hand, it is well known that,
as the finite-difference scheme with respect to the spatial variables
is applied, not only the simplified model of fluid–structure inter-
actions based on potential-flow equations of irrotational flow or
with the Euler equations of inviscid flow, but also the full-order
model with Navier–Stokes equations of viscid and rotational flow
can be degenerated into a set of nonlinear ODEs. As a result, the
Volterra series, as a functional series representation, is considered
to be naturally appropriate for modeling the nonlinear aero-
dynamic systems. The Volterra series-based low-dimensional
model will be constructed with the impulse-function inputs. As a
result, once the parameters (kernels) of the model are identified, it
can be employed in predicting the response of the investigated
nonlinear aerodynamic system under arbitrary inputs (e.g., har-
monic, random, or other signals) (Rugh, 1981). Basically, various
aerodynamic and aeroelastic sources which contribute to the
wind-induced effects on structures (bridges, buildings, aircrafts, or
wind turbines) could be decomposed into perturbations of wind
velocities, and translational and torsional motions of the struc-
tures. Hence, only three sets of kernels (i.e., gust-related, transla-
tional-motion related and torsional-motion related kernels) need
to be identified in the simulation of any complex aerodynamic
system.

This paper is organized as follows. Section 2 will focus on the
development of the low-dimensional model based on Volterra
series through a peeling-an-onion analogy, where the physical
significance of the nonlinearities in the bluff-body aerodynamics is
highlighted. Besides, the truncated Volterra series is discussed to
conveniently apply the developed low-dimensional model to
weakly nonlinear aerodynamic system. In Section 3, three nonlinear
phenomenological examples, which represent the gust-induced
response, vortex-induced vibration, and coupling interactions of
buffeting and flutter of the long-span cable-supported bridges,
respectively, are employed to show the capability of the proposed
low-dimensional model in simulating the nonlinear bluff-body
aerodynamic effects. In Section 4, a computational fluid dynamics
(CFD)-based example, representing the motion-induced nonlinear
effects of a rectangular bluff body, is investigated to further discuss
the efficiency and fidelity of the simulation of the low-dimensional
model for the nonlinear bluff-body aerodynamics.

2. Volterra series based model

2.1. A peeling-an-onion analogy

Nonlinear effects in bluff-body aerodynamics may result
from the flow separation, reattachment around the deck, and the

three-dimensional wake dynamics. The consideration of non-
linearity is usually carried out in the time domain benefitting from
its ability to take into account the nonlinear effects readily. In the
time domain, the convolution of a linear kernel, e.g., the unit-step
response function, is well known as Duhamel's integral. If the
response of a general dynamic system due to a unit-step function
(unit-step response function or indicial response function) a(t) is
known, then the response y(t) of a time invariant, causal, linear
system under arbitrary input x(t) can be obtained in the time
domain by (e.g., von Kármán and Biot (1940))

y t a t x a t x d0 1
t

0
∫ τ τ τ( ) = ( ) ( ) + ( − ) ̇ ( ) ( )

where the dot denotes a derivative with respect to time. For the
streamlined cross-section, such as the thin airfoil, the unit-step
response could be derived theoretically, e.g., the Küssner function
(gust input) or Wagner function (motion input). However, for the
bluff cross-section, such as the bridge deck, there is no such the-
oretical unit-step response as the potential flow theory and Kutta
condition cannot be applied to bluff-body aerodynamics. A com-
monly applied approach utilizes the measured transfer functions
(aerodynamic admittance functions or flutter derivatives) in wind
tunnel to obtain the effective unit-step responses with an indicial
function or a rational function approximation scheme (e.g., Scan-
lan et al. (1974), Bucher and Lin (1988) and Chen and Kareem
(2003)). Some other attempts are to directly measure these ele-
mentary response functions of bluff cross-sections in wind tunnels
(e.g., Caracoglia and Jones (2003)) or to numerically calculate them
utilizing CFD technique (e.g., Turbelin and Gibert (2001)).

To capture the nonlinear dynamic features, Tobak and Pearson
(1964) considered a more generalized situation where the unit-
step response function depended not only on the motion x τ( ) at
time τ at which the unit-step input was made, but also on all the
past values of x. Hence, the nonlinear dynamic response could be
expressed as (Tobak and Pearson, 1964)

y t a x t x a x t x d0 ; , 0 0 ; , 2
t

0
∫ κ τ τ τ( ) = ~{ ( ) } ( ) + ~{ ( ) } ̇ ( ) ( )

where a x t; ,κ τ˜( ( ) ) denotes the nonlinear indicial (unit-step)
response function. The nonlinear unit-step response function is a
functional and could be defined by the functional derivative
(Fréchet derivative) with respect to the input x. The concept of
nonlinear unit-step response function offers a general framework
to simulate nonlinear aerodynamics; however, its translation to
applications is intractable. To obtain a practical nonlinear analysis
framework for real problems, Wu and Kareem (2013b) utilized a
"peeling-an-onion" type approach, in which the nonlinear effects
of the dynamic system are extracted from a nonlinear unit-step
response function using a "step-by-step" procedure. Obviously, if
the dynamic system is linear and time-invariant, a x t; ,κ τ˜( ( ) )
reduces to a t τ( − ), which is characterized by one time scale (t�τ).
Accordingly, the nonlinear unit-step response function could be
expressed as

⎡
⎣⎢

⎤
⎦⎥a x t a t a x t x d; , ; ,

3

t
non

0
1 1∫κ τ τ κ τ κ κ˜{ ( ) } = ( − ) + ˜ { ( ) } ̇ ( )

( )

where it is assumed that x(0)¼0 to provide a parsimonious model.
The identification of a t τ( − ) only needs a single step-function
input.

It should be noted that there could be infinite time scales in
nonlinear unit-step response functions given in Eq. (3) since κmay
attain an arbitrary value in the time interval [0, t]. In the bluff-
body aerodynamics, taking the motion-induced effects as an
example, the effects due to multiple time scales may well repre-
sent the higher-order (nonlinear) coupling effects of the motion
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