

Contents lists available at ScienceDirect

Journal of Wind Engineering and Industrial Aerodynamics

journal homepage: www.elsevier.com/locate/jweia

Evaluation study of a Navier– Stokes CFD aeroelastic model of wind turbine airfoils in classical flutter

C.A. Baxevanou^a, P.K. Chaviaropoulos^b, S.G. Voutsinas^c, N.S. Vlachos^{a,*}

^a Department of Mechanical & Industrial Engineering, University of Thessaly, Athens Avenue, 38334 Volos, Greece

^b Centre for Renewable Energy Sources, Pikermi Attikis, Greece

^c Department of Mechanical Engineering, National Technical University of Athens, Greece

ARTICLE INFO

Article history: Received 2 June 2006 Accepted 20 March 2008 Available online 19 May 2008

Keywords: CFD Aeroelasticity Wind turbine blades Classical flutter Stability

ABSTRACT

This paper describes a new aeroelastic numerical model, which combines a Navier–Stokes CFD solver with an elastic model and two coupling schemes for the study of the aeroelastic behaviour of wind turbine blades undergoing classical flutter. The basic characteristics of the aerodynamic and elastic models are presented together with the coupling schemes. The present model is evaluated by comparing with previous numerical results and the corresponding linear analytical solutions. Consequently, a parametric study is carried out. Conclusions are drawn about the ability of the model to handle the aeroelastic behaviour of an airfoil and about the most appropriate coupling scheme in terms of predicting the modal damping and the flutter limiting point. The present study shows that the predictions are only slightly affected by the coupling or the space discretization scheme and mainly by the turbulence model used.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The interest in the study of the aeroelastic stability of wind turbines has been recently renewed when cracks were observed on wind turbine blades (Moeller, 1997). Linear analysis performed on rotating typical blade sections undergoing a coupled flap–lag motion has shown that cracks would appear as a result of negative aerodynamic damping in stalled flow conditions when low temperatures or material aging may have degraded the inherent structural damping (Chaviaropoulos,

* Corresponding author. Tel.: +302421074094; fax: +302421074085. *E-mail address:* vlachos@mie.uth.gr (N.S. Vlachos).

0167-6105/\$ - see front matter \circledast 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.jweia.2008.03.009

Nomenclature		S_i	static moment about elastic axis
Symbols		U	wind velocity
Syntbols		Ū	non-dimensional wind speed
	• • • · · · · · · ·	ū	fluid velocity mean value
(·)*	chord scaling: $(\cdot)^* = (\cdot)/c$	u′	fluctuating velocity value
(•)	reduced time derivatives	ū	fluid velocity vector
(_)	denotes time averaging	$\overrightarrow{u_{\rm I}}$	airfoil surface velocity at point (ξ,ζ)
(•)	time derivative	$\xrightarrow{\bullet}_{11}$	airfoil surface acceleration at point
		u	
Latin letters			((,,))
		u, w	spactively
ang0	initial angle of attack	17	i component of input oil stream
angeff	effective angle of attack	Vi	l-component of input air stream
\vec{b}	body force	+	velocity
Ci	aerodynamic coefficient $(i = L \text{ for } I)$	У	non-dimensional distance from the
-1	lift. M for moment, D for drag, u for	*	wall $(y' = yu_{\tau}/v)$
	the flap driving force and w for the	u [.]	friction velocity
	edge driving force)	$u_{ au}$	friction velocity
C	airfoil chord		
D	damping ratio $(D = P_r/\omega_0)$	Greek le	tters
D:	structural damping coefficient		
E	aerodynamic load	а	displacement vector
I U,W	inertia tensor	α	torsion angle
k	stiffness coefficient	3	turbulence dissipation rate
k	turbulence kinetic energy	κ	reduced frequency $\kappa = \Omega c / \overline{U}$
k _P	roughness height	μ	fluid viscosity
M	pitching moment	μ_t	turbulent viscosity
MD	modal damping ratio (MD = $-D/$	v	kinematic fluid viscosity
	2π)	(ζ,ζ)	sectional principal elastic axes
т	airfoil mass per unit length	ζDi	non-dimensional structural damp-
$P_{\rm p}, P_{\rm i}$	the real and imaginary part of the		ing coefficient $2\xi_{\underline{D}i}\omega_i = D_i/m$
	eigenvalues	$\tau \leftrightarrow$	reduced time $(= Ut/c)$
р	the fluid pressure	τ	viscous stress tensor
p	fluid pressure mean value	Ω	rotational speed θ
p'	fluctuating pressure value	ω	specific dissipation rate
p_0	initial pitch angle	$\bar{\omega}_i$	uncoupled harmonic oscillation fre-
R	airfoil radial position		quency $\bar{\omega}_i (= \omega_i / \Omega)$
Re	Reynolds number	ω_0	natural frequency
$R_{\rm f}$	mass ratio $R_{\rm f} = \rho_{\rm air} c^2 / m$		
r	mass scaling (r/m)		$\left(\omega_0 = \sqrt{P_r^2 + P_i^2}\right)$
r^2	inertia mass scaling (I_p/m)		

1999). In order to overcome this problem industry introduced stall strips to avoid negative aerodynamic damping (in spite of the penalty on the produced energy) and by revising the structural design in order to increase structural damping (Chaviaropoulos et al., 2004). However, because the available margins for design modifications are narrow, it became necessary to reconsider the aeroelastic problem in more detail on the basis of more accurate non-linear models so as to gain better understanding. In this connection viscous aerodynamic models have been introduced, classical and stall flutter problems have been considered at the level of wind turbine blade sections and results have been compared to linear theory (Dowell et al., 1995). Following the analysis in Chaviaropoulos (1999) the 3D flow conditions are mapped on typical sections and the flexibility of the blades is introduced by means of concentrated stiffness. Although such an approach deals with a

Download English Version:

https://daneshyari.com/en/article/293209

Download Persian Version:

https://daneshyari.com/article/293209

Daneshyari.com