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a b s t r a c t

Although Computational Fluid Dynamics (CFD) simulations are often used to assess wind conditions
around buildings, the accuracy of such simulations is often unknown. This paper proposes a data-
interpretation framework that uses multiple simulations in combination with measurement data to
improve the accuracy of wind predictions. Multiple simulations are generated through varying sets of
parameter values. Sets of parameter values are falsified and thus not used for predictions if differences
between measurement data and simulation predictions, for any measurement location, are larger than an
estimate of uncertainty bounds. The bounds are defined by combining measurement and modeling
uncertainties at sensor locations. The framework accounts for time-dependent and spatially-distributed
modeling uncertainties that are present in CFD simulations of wind. The framework is applied to the case
study of the CREATE Tower located at the National University of Singapore. Values for time-dependent
inlet conditions, as well as values for the roughness of surrounding buildings, are identified with mea-
surements carried out around the CREATE Tower. Results show that, on average, ranges of horizontal
wind-speed predictions at an unmeasured location have been decreased by 65% when measurement data
are used.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Wind around buildings affects the comfort and health of resi-
dents as well as the energy consumption of buildings, particularly
in tropical climates. For example, the convective heat flux at the
building façade, influencing energy consumption of buildings,
depends on the surrounding wind (Defraeye et al., 2011). Wind can
also be harnessed for natural ventilation of buildings (Ghiaus and
Allard, 2005). Computational Fluid Dynamics (CFD) simulations
have been widely used to simulate wind around and through
buildings (Van Hooff and Blocken, 2010; Ramponi and Blocken,
2012). Although guidelines have been established to improve
simulation predictions (Franke et al., 2004), large discrepancies
remain when simulation predictions are compared to field mea-
surements. Moreover, uncertainties in simulation predictions are
usually not quantified (Blocken and Gualtieri, 2012).

The steady Reynolds-averaged Navier–Stokes (RANS) equations
are usually employed in CFD simulations to describe the fluid-flow

behavior. These equations are time-averaged or ensemble-aver-
aged equations of the fluid-flow motion. Large discrepancies have
been observed in wakes of buildings when predictions of RANS-
based simulations are compared with wind-tunnel experiments
(Tominaga et al., 2008; Yoshie et al., 2007). Wind-tunnel experi-
ments are usually employed to evaluate the performance of
approximate equations of fluid-flow solved in CFD simulations
because values of parameters are known (e.g. inlet conditions and
surface roughness). Large Eddy Simulation (LES) is an alternative
strategy for modeling fluid-flow behavior in which time-depen-
dent predictions are computed. LES has been found to provide
better agreement with wind-tunnel experiments than RANS-based
simulations (Tominaga et al., 2008).

Thermal processes may affect the wind behavior around
buildings, especially in street canyons which can be subject to
combinations of low wind speeds and high differential heating
between surfaces (Niachou et al., 2008). However, if thermal
processes are implemented into the CFD model, modeling com-
plexity is increased (Van Hooff and Blocken, 2010; Assimakopoulos
et al., 2006) along with the number of parameters that cannot be
easily estimated, such as the thermal properties of surfaces.
Therefore, thermal processes are not often included in CFD simu-
lations. Effects of thermal processes have been evaluated by using
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field measurements (Niachou et al., 2008); by simulating thermal
processes with CFD simulations (Xie et al., 2005); or by using
wind-tunnel experiments with a heated floor (Allegrini et al.,
2013). However, the effects have been estimated for standard
building configurations (street canyons) and they are likely to vary
for other topologies.

Model-based data interpretation has the potential to improve
the accuracy of simulation predictions through the use of a
population of CFD simulations and measurement data. In model-
based data-interpretation approaches, many model instances
(simulation instances) are generated through assigning sets of
parameter values to a model class. In this work, the model class is
a CFD model with un-assigned parameter values. Measurement
data are used to estimate sets of parameter values by solving an
inverse problem. The inverse problem involves estimating sets of
parameter values by comparing measurement data with predic-
tions of model instances. Several approaches are described in
following chapters.

Model calibration, in which an “optimal” model is found by
minimizing the sum of the squared difference between simulation
predictions and measurement data, is not appropriate because
there rarely is a single answer to the inverse problem. Many set
(s) of parameter values within a model class might give same
responses at sensor locations in complex systems (Beven, 2006).
Such ambiguities are amplified by measurement and modeling
uncertainties. Modeling uncertainties refer to uncertainties
(probability distributions of errors) in the model class (e.g uncer-
tainties associated with RANS equations). Moreover, model cali-
bration approaches provide values of parameters, which com-
pensate modeling and measurement errors at sensor locations.
Therefore, the “optimal” model is conditional on sensor locations
(and modeling errors at those locations). Furthermore, calibration
approaches do not provide information that can lead to estimates
of uncertainties of subsequent predictions (Beven, 2008).

Bayesian inference identifies conditional probability distribu-
tions of parameter values given measurement data (Box and Tiao,
2011). Probability distributions are required to represent mea-
surement and modeling uncertainties at sensor locations. Uncer-
tainties in CFD simulations are difficult, if not impossible to
determine precisely. If incorrect probability distributions are
defined, it may lead to over-conditioning of parameter values
(Beven, 2008). Furthermore, modeling errors are often systematic
and this introduces additional error correlations between mea-
surement locations (Goulet et al., 2013; Goulet and Smith, 2013).
Implementation of Bayesian inference requires a complete
knowledge of all correlations in order to avoid biased predictions.
In wind modeling, the values of such correlations are unknown.

An alternative is to use a model-falsification approach, such as
error-domain model falsification (Goulet et al., 2013, 2012) and
Generalized Likelihood Uncertainty Estimation (GLUE) (Beven,
2008), in which incorrect sets of parameter values are falsified
using measurement data. Only bounds of measurement and
modeling uncertainties are needed. Error-domain model falsifica-
tion has been developed in the application of bridge diagnosis and
leak detection in water networks. Error-domain model falsification
involves falsification of model instances for which differences
between measurement data and simulation predictions, for any
measurement location, are larger than an estimate of uncertainty
bounds; the bounds are defined by combining measurement
uncertainties and modeling uncertainties at that location. When
the entire set of model instances is falsified, the model class is
incorrect. This could mean that either additional processes need to
be included, boundary conditions are incorrect, etc. or modeling
and measurement uncertainties have been underestimated. In this
way, model falsification provides a way to test the validity of
model classes.

The main objective of this paper is to present a model-based
data-interpretation framework which is appropriate for the iden-
tification of parameter values of CFD simulations, and subsequent
predictions at unmeasured locations. The framework is based on
error-domain model falsification. Improvements have been made
to error-domain model falsification in order to reproduce time
variability (at the scale of 15 min) of wind through allowing
identification of different sets of inlet conditions at different times.
In this framework, time-dependent inlet conditions as well as the
roughness of the surrounding buildings are identified using time
series of measurement data.

Modeling and measurement uncertainties affect the informa-
tion content of measurement data. A systematic methodology to
evaluate modeling uncertainties is proposed that recognizes their
time-dependent and spatially-distributed characteristics. The final
objective is to apply the methodology to the case study of the
“CREATE Tower”. The CREATE Tower is a 16-storey building located
at the National University of Singapore.

The structure of the paper is as follows. In the next section, the
model-based data-interpretation framework is described. Section
3 introduces the case study and the model class including the
parameters requiring identification. The experimental setup is
presented in Section 4. Section 5 presents a methodology to esti-
mate modeling uncertainties that can be incorporated to the
model-based data-interpretation framework. The model-based
data-interpretation framework is applied in Section 6 using
simulation predictions, measurement data and knowledge of
measurement and modeling uncertainties. The paper ends with a
discussion of the results and plans for future work.

2. Methodology

This section presents the model-based data-interpretation fra-
mework used to identify sets of parameter values of the CFD
simulation and predict wind variables at unmeasured locations.
This framework is based on error-domain model falsification
which has been found to be useful in applications of bridge
diagnosis and leak detection in water networks (Goulet et al., 2013,
2012). In such systems, parameter values are identified using
measurements carried out only at specific times. In the assessment
of wind behavior around buildings, parameter values of CFD
simulations need to be identified dynamically using time series of
measurements.

2.1. Error-domain model falsification

Error-domain model falsification involves generating sets of
model instances M j( )θ through assigning a combination of para-

meter values ⎡⎣ ⎤⎦, ,j p j1θ θ θ= … to a model class M with

j n1, , m{ }∈ … . p is the number of parameters requiring identifi-
cation and nm is the number of model instances. When correct sets

of parameter values θ* are assigned to the model class, the pre-

dicted value of an output variable of the model instance M ( )θ*

differs from the real value (Q ) by the modeling error modelϵ .
Modeling errors are errors associated with the model class. The
real value is also equal to the measured value y plus a measure-
ment error measureϵ . This is expressed in Eq. (1).

M Q y 1model measure( )θ* + ϵ = = + ϵ ( )

Eq. (2) is derived by rearranging the terms in Eq. (1). The dif-
ference between the predicted and the measured value is equal to
the difference between the measurement and the modeling error.
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