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a b s t r a c t

In this paper we use risk management techniques to evaluate the effects of some risk factors that affect
the energy production of a wind farm. We focus our attention on three major risks: wind speed varia-
bility, wind turbine failures and correlations between produced energy.

As a first contribution, we show that the Weibull distribution, commonly used to fit recorded wind
speed data, underestimates rare events. Therefore, in order to achieve a better estimation of the tail of
the wind speed distribution, we advance a Generalized Pareto distribution. We considered one aspect of
the wind turbines reliability by modeling their failure events as a compound Poisson process. Finally, the
use of Copula enables us to consider the correlation between wind turbines that compose the wind farm.
Once this procedure is set up, we show a sensitivity analysis and we also compare the results from the
proposed procedure with a simplistic energy prediction using the Weibull distribution.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Wind power now accounts for a high proportion of generation
capacity in many regions. For example, wind accounted for 17% of
Germany's 167.8 GW of installed generation capacity in 2011 (Hau
and Von Renouard, 2013). As wind power's share of electricity
generation has increased, so have the financial consequences of
risks associated with its inherently high variability. Wind speed
variability has many financial consequences. Low wind speeds
reduce generation and revenues for wind power generators and
may adversely affect the ability to meet debt payments creating
credit risks for investors. Conversely, excessively high wind speeds
may temporarily halt generation or delay wind farm construction.
When wind has priority access to the grid, thermal power plants
have to balance generation regardless of whether wind is above or
below forecasted levels. Wind speed variability may also com-
pound price risk for other market players through its influence on
wholesale electricity market clearing prices in competitive day-
ahead and intraday markets. The uncertainty in wind power pro-
duction needs to be hedged through risk management techniques.

In this work we will focus our attention on the sources of risk
which are present in a wind farm, namely wind speed variability,
wind turbine failures and correlation between produced energy.

Despite the Weibull distribution (WD) is often used by practi-
tioners and researchers alike (see Weisser, 2003; Akdağ and Din-
ler, 2009; Chang, 2011) it does not fit well the right tail of the wind
speed distribution underestimating strong wind probabilities. The
WD models accurately the body of the wind speed distribution,
but the same statement cannot be made for the tail of the dis-
tribution. By applying Extreme Value Theory we will show that it
is possible to better estimate the number of strong wind events if a
Generalized Pareto distribution (GPD) is used to fit the right tail of
the wind speed distribution. A similar approach was already used
in the field of wind speed modeling (see Morgan et al., 2011;
Holmes and Moriarty, 1999; Van de Vyver and Delcloo, 2011;
Zachary et al., 1998). Here we are interested in highlighting the
importance of Extreme Value Theory as a mean for controlling the
risk arising from the variability of wind speed when applied to a
real case of energy production.

Another source of risk is the failure of the wind turbine and the
necessary time to repair it. We model the failure events by means
of a compound Poisson process. The compound Poisson model is
widely adopted by insurance modelers for measuring aggregate
risks (see e.g. Tse, 2009) and we will show that it can be used also
in the management of a wind farm to consider periods of non-
production of energy due to failure of the wind turbines and to the
time for repairing.

The third source of risk considered here is the correlation be-
tween wind turbines energy production. Indeed, since in a wind
farm many turbines act together, it would be better to consider
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their multivariate distribution of energy production instead of
considering the turbines as independent and with an identical
production of energy. This risk factor is considered through Co-
pulas that permit the construction of a multivariate model having
fixed marginals (univariate) distributions.

In the present work we consider a wind speed database of a
specific site in Alaska and we assume to put there a wind farm
composed of 10 commercial wind turbines. We propose then a
procedure to estimate correctly the energy production of the al-
located wind farm by taking into account the three sources of
uncertainty.

The paper is organized as follows: in Section 2 we describe the
wind speed database and the commercial wind turbines con-
sidered in the application. In Section 3 we present the models at
the basis of the proposed procedure. Section 4 shows the appli-
cation of the procedure to our database, sensitivity analysis and
the comparison with the energy estimation of a wind farmwithout
considering the aforementioned risk factors. At last, in Section 5
we give some concluding remarks.

2. Data and technology used

2.1. Database

The database of wind speed used in our analysis was collected
by the National Data Buoy Center (www.ndbc.noaa.gov). Particu-
larly, we downloaded the data from the inshore station RDDA2
that is situated at 67.577°N 164.065°W in Alaska. The data are
available for six years ranging from 2006 to 2012 with a sample
period of six minutes. The instrumentation is located at 10 m
above the ground and mean and maximum values of wind speed
in the database are, respectively, of 4.5 and 34.8 m/s.

This database is used to analyze the production of energy from
commercial wind turbines which have the hub at a given altitude.
Then, since the altitude from the ground influences the wind
speed, we have to transform the 10 m velocities to corresponding
data at the required altitude. It is well known in the literature that
wind speed has the following dependence from the altitude (see
e.g. D'Amico et al., 2013b):
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where vh is the wind speed at the height of the wind turbine hub,
vrif is the value of the wind speed at the height of the instrument, h
and hrif are the height of the wind turbine and of the instrument
(h 50 m= and h 10 mrif = ), respectively. The parameter z0 is a
factor that takes into account the morphology of the area near the
wind turbine. For a region without buildings or trees, this para-
meter varies from 0.01 to 0.001, instead for the offshore applica-
tion it is equal to 0.0001. In our analysis we consider a mean value
for an onshore application, then we fix z0¼0.005. With this
transformation we have an increase of the mean and also of the
maximum value of the wind speed, which became 5.4 and 42 m/s,
respectively. In Fig. 1 we show the main characteristics of the
database. In panel (a) we show the probability density function
(PDF) of the wind speed. Panel (b) shows a piece of one year of the
time series, instead in panel (c) we report the Box-Plot where we
can see that the median wind speed is below the mean value and
that in the fourth quartile there are all the wind speeds greater
than 15 m/s.

2.2. Commercial wind turbine

Wind turbines convert the kinetic energy of wind into electrical
power. The quantity of converted energy depends, ceteris paribus,
on the installed wind turbines. In this application we chose a
commercial wind turbine, the 330 kW Enercon E33. This turbine
has a height of the hub from the ground of 50 m. The most im-
portant property of each wind turbine is its power curve that
characterizes the performance of the wind turbine. This curve
gives the energy produced by the turbine as a function of wind
speed. The power curve of the 330 kW Enercon E33 is represented
in Fig. 2 and the numerical values are reported in Table 1. For the
present application we converted each wind speed data into en-
ergy by using the power curve in Fig. 2. The power curve is given
by the producer only as discrete points (see Table 1) while wind
speed is measured continuously, then, a linear interpolation be-
tween subsequent discrete states of the power curve was
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Fig. 1. Wind speed data of the RDDA2 station. (a) Histogram of the probability density function, (b) one year time series, and (c) Box-Plot.
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