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a b s t r a c t

Added mass has significant effect on the vibration of membrane structures, which cannot be ignored
during vibration analysis. Actually, the added mass of typical objects, such as cylinders and spheres,
moving in fluid with acceleration have been widely investigated. However, research on the added mass
of flexible structures is still limited. Although several numerical methods had been developed to
investigate the added mass of flexible structures, the efficiency of the numerical methods is not verified
by experiment tests. In this study, a framework to numerically analysis the added mass of open flat
membranes has been established by using the Boundary Element Method (BEM). In order to evaluate
hypersingular integral, the Stokes formula converting the surface integral to the curvilinear integral is
used. Two added mass models are discussed, one only considering the effect of the membrane geometric
shape, and another considering the effect of the geometric shape and the mode shape of membranes.
Based on comparative analysis between numerical results and experimental results, it is shown that the
added mass only considering the effect of geometric shape can agree well with the test results in low-
order modes, however, the error will be increased as the order of vibration modes increasing. The added
mass considering the effect of the geometric shape and the mode shape can have much better
conformity with the test results both in low-order modes and high-order modes. The Modal Assurance
Criterion (MAC) is used to compare the mode shapes of membranes vibrating in vacuum and in air. MAC
values indicate that for uniform mass distribution of the membrane, there is little difference between the
mode shapes of the membrane vibrating in vacuum and in air, while for nonuniform mass distribution of
the membrane, the difference between the mode shapes of the membrane vibrating in vacuum and in air
is little in low modes and is large in high modes.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In fluid mechanics, the added mass or virtual mass, is the added
inertia to the system, since the increase or decrease in the body
acceleration should cause the fluid to move around the body in
such a way that the object can move through it, and the body and
the fluid cannot simultaneously occupy this physical space. For
light weight structures, such as membrane structures, when they
vibrate in a certain kind of fluids, a part of the surrounding fluid
will be invoked and will vibrate together with structures. Hence,
the added mass should have a significant influence on the
vibration of membrane structures.

Actually, the added mass of typical objects, such as cylinders and
spheres, moving in fluid with acceleration had been widely

investigated. Some determinations of the fluid loading and the added
mass for a supported plate are known from the slender wing theory
(Jones, 1946), the traveling wave solution (Miles, 1956; Dugundji
et al., 1963), two-dimensional linear aerodynamic theory (Kornecki
et al., 1976), or three-dimensional linear aerodynamic theory (Lucey
and Carpenter, 1993). Yadykin et al. (2003) reviewed the fluid loading
formulations and applied the thin airfoil theory to numerical study of
the fundamental properties of the added mass of a flexible plate
oscillating in fluid. However, the research on the added mass of
membrane structures is still limited. Up to now, several numerical
simulation methods had been developed to investigate the added
mass of membrane structures. Irwin and Wardlaw (1979) presented
an empirical equation for estimating the added mass for the mem-
brane roof of Montreal Stadium.With the framework of the thin airfoil
theory, Minami (1998) had investigated a membrane with its ends
fixed in an incompressible fluid, and it was proposed that the added
mass is equivalent to the air uniformly distributed on the membrane
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with an estimated height of 68% the length of the membrane. Sygulski
(1993) presented a method for solving the free vibration and the linear
forced harmonic vibration problems for pneumatic structures inter-
acting with air. The Finite Element Method (FEM) for the structure and
the Boundary Element Method (BEM) for the air were used. Sygulski
(1994) presented a method for solving the free vibration and the linear
forced harmonic vibration problems for open membrane structures
interacting with air, and the method describing the aerodynamic
pressure was based on the boundary integral equation, which was
solved by the BEM. Sygulski (1997) analyzed the problem of interac-
tion between a pneumatic structure and the surrounding air by using
the BEM and FEM. However, no test result had been applied to verify
the results by the numerical simulation methods mentioned above.
Sewall et al (1983) undertook an experimental investigation of
membrane vibrations. Tests were preformed both in air and in vacuum
for various membrane pretensions. Sewall et al. (1983) also proposed a
distribution model of the added mass of the membrane. Li et al (2011)
tested the vibration of a circular flat membrane in still air with varying
air pressures, and a simplified added mass model was proposed based
on the vibration mode shapes of the flat membranes, i.e., the added
mass above each vibration region is equal to the uniformly distributed
air with height of 0.65l, in which l is the diameter of the inscribed
circle of the region. The addedmass coefficient, 0.65, was derived from
the fitting analysis of the circular membrane results, and was also
proved by the existing test data of a three-sided membrane by Sewall
et al (1983). However, this simplified added mass model was lack of
theoretical analysis.

In this study, a framework to numerically analyze the added
mass of open flat membranes has been established by using the
BEM. The velocity potential of the still air satisfies the Laplace
equation, and the boundary conditions on the surface are of
the Neumann type. The aerodynamic pressure is described by
the boundary integral equation, and solved by the BEM. In order to
evaluate hypersingular integral, the Stokes formula converting the
surface integral to the curvilinear integral is used. Two added mass
models are discussed, one only considering the effect of the
membrane geometric shape, and another considering the effect
of both the geometric shape and mode shape of membranes. The
numerical results of two added mass models are compared with
the data of the existing tests on circular, square and three-sided
membranes. The Modal Assurance Criterion (MAC) is a statistical
indicator that is most sensitive to large differences and relatively
insensitive to small differences in the mode shapes (Randall, 2003;
Pastor et al., 2012). It is bounded between 0 and 1, with 1 indicat-
ing fully consistent mode shapes. A value near 0 indicates that the
modes are not consistent. In this paper, the MAC is used to indicate
the difference of mode shapes between membranes vibrating in
vacuum and in air.

2. The added mass of open flat membranes

2.1. Numerical analysis of still air induced by open flat membrane

A light open membrane structure of any shape in still air is
considered. The membrane during vibration will induce the
motion of surrounding air, and the air becomes a source of the
additional inertia forces, as the same as the contribution of the
structural mass. It is assumed that the air is incompressible and
inviscid, and the velocity potential of the air satisfies the Laplace
equation, i.e.,

∂2φ
∂x2

þ∂2φ
∂y2

þ∂2φ
∂z2

¼ 0 ð1Þ

where φ is the velocity potential of the air.

The solution of this equitation in integral form is

4π
∂φP

∂nP
¼∬ΓiφQ
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� �
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where, φQ is the velocity potential of the air at point Q on the
surface, φP is the velocity potential in any point of the space, rPQ is
the distance between any point P and a point Q on the surface (as
shown in Fig. 1), and ∂φP=∂nP is the air velocity normal to the
surface at the point P.

The boundary condition on the surface S is of Neumann's type
and it is a coupling condition between the structure and the air.
The formulations of the aerodynamic pressure and acceleration of
the air are

pn ¼ �ρ
∂φ
∂t
; an ¼ ∂2φ

∂n∂t
ð3Þ

where ρ is the air density.
Differentiating Eq. (2) with respect to time and using Eq. (3)

yields

�4πanP ¼∬ΓipnQ
∂2
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1
rPQ

� �
dΓ ð4Þ

where pnQ is the resultant aerodynamic pressure acting at the
point Q.

The BEM is used to numerically solve the boundary integral
equation, Eq. (4). The surface of the membrane structure is
discretized using the triangular elements. The boundary element
discretization of Eq. (4) results in the following equation:

�4πan ¼ Apn ð5Þ
where, the matrix A, a N�N complex matrix (N is the number of
triangular elements) is

A¼∬Γi

∂2
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� �
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The kernel of the integral has a strong singularity of the r�3

order, when the point Q approaches the point P (rPQ-0). For this
case the integral cannot be directly determined. It can construct a
set of related functions and use the Stokes formula to convert to
the curvilinear integral on the edge of the surface. In this way, both
the computational efficiency and accuracy are improved greatly.

The differentiation in Eq. (6) can be perform in the following
form

∂2

∂nP∂nQ

1
rPQ

� �
¼ �3zPðxQ �xPÞ

r5PQ
nxþ
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�r2PQ þ3z2P
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ð7Þ
As shown in Fig. 2, the local coordinate system of the element P

is defined by (ξ, η, ζ). The direction of the unit axis vectors ζ is the

Fig. 1. A light open membrane structure.
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