CLINICAL RESEARCH

Acute Coronary Syndromes

Vorapaxar in Acute Coronary Syndrome Patients Undergoing Coronary Artery Bypass Graft Surgery

Subgroup Analysis From the TRACER Trial (Thrombin Receptor Antagonist for Clinical Event Reduction in Acute Coronary Syndrome)

David J. Whellan, MD,* Pierluigi Tricoci, MD, PhD,† Edmond Chen, MD,‡ Zhen Huang, MS,† David Leibowitz, MD,§ Pascal Vranckx, MD,|| Gregary D. Marhefka, MD,* Claes Held, MD, PhD,¶ Jose C. Nicolau, MD, PhD,# Robert F. Storey, MD, DM,** Witold Ruzyllo, MD,†† Kurt Huber, MD,‡‡ Peter Sinnaeve, MD, PhD,§§ A. Teddy Weiss, MD,§ Jean-Pierre Dery, MD,|||| David J. Moliterno, MD,¶¶ Frans Van de Werf, MD,§§ Philip E. Aylward, MD,## Harvey D. White, DSC,*** Paul W. Armstrong, MD,††† Lars Wallentin, MD, PhD,¶

Philadelphia, Pennsylvania; Durham, North Carolina; Whitehouse Station, New Jersey; Jerusalem, Israel; Rotterdam, the Netherlands; Uppsala, Sweden; São Paulo, Brazil; Sheffield, United Kingdom; Warsaw, Poland; Vienna, Austria; Leuven, Belgium; Québec City, Québec and Edmonton, Alberta, Canada;

Lexington, Kentucky; Adelaide, Australia; Auckland, New Zealand; and Stanford, California

John Strony, MD,‡ Robert A. Harrington, MD,‡‡‡ Kenneth W. Mahaffey, MD‡‡‡

Objectives

This study evaluated effects of protease-activated receptor-1 antagonist vorapaxar (Merck, Whitehouse Station, New Jersey) versus placebo among the TRACER (Thrombin Receptor Antagonist for Clinical Event Reduction in Acute Coronary Syndrome) study patients with non–ST-segment elevation acute coronary syndromes undergoing coronary artery bypass grafting (CABG).

Background

Platelet activation may play a key role in graft occlusion, and antiplatelet therapies may reduce ischemic events, but perioperative bleeding risk remains a major concern. Although the TRACER study did not meet the primary quintuple composite outcome in the overall population with increased bleeding, an efficacy signal with vorapaxar was noted on major ischemic outcomes, and preliminary data suggest an acceptable surgical bleeding profile. We aimed to assess efficacy and safety of vorapaxar among CABG patients.

Methods

Associations between treatment and ischemic and bleeding outcomes were assessed using time-to-event analysis. Hazard ratios (HRs) and 95% confidence intervals (Cls) were calculated using the Cox hazards model. Event rates were estimated using the Kaplan-Meier method.

Results

Among 12,944 patients, 1,312 (10.1%) underwent CABG during index hospitalization, with 78% on the study drug at the time of surgery. Compared with placebo CABG patients, vorapaxar-treated patients had a 45% lower rate of the primary endpoint (i.e., a composite of death, myocardial infarction, stroke, recurrent ischemia with rehospitalization, or urgent coronary revascularization during index hospitalization) (HR: 0.55; 95% CI: 0.36 to 0.83; p=0.005), with a significant interaction (p=0.012). The CABG-related Thrombolysis In Myocardial Infarction major bleeding was numerically higher with vorapaxar, but not significantly different between vorapaxar and placebo (9.7% vs. 7.3%; HR: 1.36; 95% CI: 0.92 to 2.02; p=0.12), with no excess in fatal bleeding (0% vs. 0.3%) or need for reoperation (4.7% vs. 4.6%).

Conclusions

In non-ST-segment elevation acute coronary syndrome patients undergoing CABG, vorapaxar was associated with a significant reduction in ischemic events and no significant increase in major CABG-related bleeding. These data show promise for protease-activated receptor 1 antagonism in patients undergoing CABG and warrant confirmatory evidence in randomized trials. (Trial to Assess the Effects of SCH 530348 in Preventing Heart Attack and Stroke in Patients With Acute Coronary Syndrome [TRA·CER] [Study P04736AM3]; NCT00527943) (J Am Coll Cardiol 2014;63:1048–57) © 2014 by the American College of Cardiology Foundation

Coronary artery bypass graft (CABG) surgery is the revascularization procedure of choice to treat patients with acute coronary syndromes (ACS) in whom coronary anatomy is not suitable for percutaneous coronary intervention. In CABG patients, subsequent ischemic events may originate in either grafts or in the native coronary artery. Asymptomatic

See page 1058

graft occlusion occurs in up to 40% of patients within 1 year (symptomatic occlusion occurs in 3.4% of patients) and is associated with a mortality rate of up to 9% (1–3). Graft thrombosis is thought to be the leading mechanism of graft closure, and platelet activation may play a key role in both early and late graft occlusion (4–8). Aspirin improves early vein graft patency and ischemic outcomes, although significant aspirin resistance has been reported after CABG surgery, whereas its effect on long-term patency remains uncertain (9–12). Additional platelet inhibition through the P2Y₁₂ receptor with clopidogrel in patients undergoing CABG after ACS was associated with reduced ischemic rates, but concerns regarding operative bleeding risk require preoperative discontinuation and have hindered widespread

From the *Division of Cardiology, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania; †Duke Clinical Research Institute, Durham, North Carolina; ‡Merck Sharp & Dohme Corp., Whitehouse Station, New Jersey; §Heart Institute, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; ||Thoraxcentre, Rotterdam, the Netherlands; ¶Department of Medical Sciences, Uppsala Clinical Research Center, Uppsala, Sweden; #Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil; **Department of Cardiovascular Science, University of Sheffield, Sheffield, United Kingdom; ††Department of Coronary Artery Disease and Cardiac Catheterization Laboratory, Institute of Cardiology, Warsaw, Poland; ‡‡3rd Department of Medicine, Cardiology and Emergency Medicine, Wilhelminen Hospital, Vienna, Austria; §§Department of Cardiology, University of Leuven, Leuven, Belgium; || || Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec City, Québec, Canada; ¶¶Gill Heart Institute and Division of Cardiovascular Medicine, University of Kentucky, Lexington, Kentucky; ##South Australian Health and Medical Research Institute, Flinders University and Medical Centre, Adelaide, Australia; ***Green Lane Cardiovascular Service, Auckland City Hospital, Auckland, New Zealand; †††Division of Cardiology, University of Alberta, Edmonton, Alberta, Canada; and the ###Department of Medicine, Stanford University, Stanford, California. The TRACER trial was funded by Merck & Co., Inc. Dr. Whellan has received consultant honoraria from Novartis, POZEN, Terumo, and Medtronic; and he has received a research grant from Merck & Co., Inc., and Medtronic. Dr. Tricoci has received a consultant agreement and research grant from Merck & Co., Inc. Dr. Chen was an employee of Merck & Co., Inc. Dr. Held has received research support from Merck & Co., Inc., GlaxoSmithKline, Astra-Zeneca, and Bristol-Myers Squibb/Pfizer; has received institutional research grants from Schering-Plough/Merck Sharp & Dohme and Roche; has served on the advisory board for Pfizer and AstraZeneca; and has received lecture fees from AstraZeneca. Dr. Nicolau has received research grant support and consulting fees/ honorarium from Merck & Co., Inc.; has board membership with AstraZeneca; has received research grant support and lecture fees, including service on speakers' bureaus from AstraZeneca and Eli Lilly; and has received travel/accommodations/ meeting expenses from AstraZeneca. Dr. Storey has received research grants from AstraZeneca, Eli Lilly/Daiichi Sankyo Alliance, Merck & Co., Inc., and Accumetrics; has served as a consultant for AstraZeneca, Eli Lilly, Daiichi Sankyo, Novartis, Merck & Co., Inc., Eisai, Sanofi-Aventis/Regeneron, Bristol-Myers Squibb, Roche, and Accumetrics; and has received honorarium from AstraZeneca, Eli Lilly, Daiichi Sankyo, Merck & Co., Inc., Accumetrics, Medscape, and Iroko. Dr. Ruzyllo has received honoraria for lectures and clinical studies from Bayer, Bristol-Myers Squibb/Pfizer, Merck & Co., Inc., Daiichi Sankyo, Eli Lilly, and Sanofi-Aventis. Dr. Huber has received honoraria for lectures and expert rounds from AstraZeneca, Bayer, Boehringer Ingelheim, Bristol-Myers Squibb/Pfizer, adoption in the management of ACS patients undergoing CABG (13–18). Consequently, there is a lack of consensus regarding both clopidogrel use post-CABG and opportunities for novel therapeutic agents to fill the treatment gap in non–ST-segment elevation (NSTE) ACS patients undergoing CABG.

Thrombin generation increases during CABG surgery and persists afterward, potentially increasing the risk of thrombotic complications, including graft and native coronary artery thrombosis (19,20). Therefore, the blockade of the main platelet thrombin

Abbreviations and Acronyms

ACS = acute coronary syndrome(s)

CABG = coronary artery bypass grafting

CI = confidence interval

CV = cardiovascular

HR = hazard ratio

IQR = interquartile range

MI = myocardial infarction

NSTE = non-ST-segment elevation

PAR = protease-activated receptor

TIMI = Thrombolysis In Myocardial Infarction

receptor, the protease-activated receptor (PAR)-1, could be a more specific strategy to reduce graft occlusion and native coronary thrombosis after CABG, thus preventing subsequent ischemic events. Vorapaxar (Merck, Whitehouse Station, New Jersey) is a selective, competitive, oral PAR-1 antagonist

Daiichi Sankyo, Eli Lilly, Sanofi-Aventis, and The Medicines Company. Dr. Sinnaeve has received a research grant from AstraZeneca; has received advisory/speakers fees from Merck Sharp & Dohme, Merck & Co., Inc., Sanofi-Aventis, Bristol-Myers Squibb, Eli Lilly, Daiichi Sankyo, AstraZeneca, Boehringer Ingelheim, Pfizer, and Bayer; and has served on the advisory board of Merck Sharp & Dohme. Dr. Moliterno has received research support and consulting fees/honoraria from Merck & Co., Inc. Dr. Van de Werf has received a research grant from Merck Sharp & Dohme; has received research support from Merck & Co., Inc. and Boehringer Ingelheim; and has served as a consultant for and received lecture fees from Astra-Zeneca and Boehringer Ingelheim. Dr. Aylward has received research support from Merck & Co., Inc., AstraZeneca, Eli Lilly, and Bayer/Johnson & Johnson; has served as a consultant for AstraZeneca, Boehringer Ingelheim, Pfizer, Sanofi-Aventis, and Eli Lilly; and has received lecture fees from AstraZeneca, Boehringer Ingelheim, and Eli Lilly. Dr. White has received research support from Sanofi-Aventis, Eli Lilly, The Medicines Company, National Institutes of Health, Pfizer, Roche, Johnson & Johnson, Merck Sharpe & Dohme, AstraZeneca, GlaxoSmithKline, Daiichi Sankyo Pharma Development, and Bristol-Myers Squibb; and has served on advisory boards for Merck Sharpe & Dohme, and Regado Biosciences. Dr. Armstrong has received research support and consulting fees/honoraria from Merck Sharp & Dohme; has served as a consultant for Eli Lilly, Regado Biosciences, F. Hoffmann-La Roche Ltd., GlaxoSmithKline, Sanofi-Aventis, Takeda Pharmaceuticals, and Merck & Co., Inc.; has received a research grant from Schering-Plough Research Institute; and has received research support from Boehringer Ingelheim, Sanofi-Aventis Canada, GlaxoSmithKline, AstraZeneca, Regado Biosciences, Amylin, and Novartis. Dr. Wallentin has received research support and consulting fees/honoraria from Merck & Co., Inc.; has performed consultancy for Regado Biotechnologies, Portola, C.S.L. Behring, Athera Biotechnologies, Boehringer Ingelheim, AstraZeneca, GlaxoSmithKline, Bristol-Myers Squibb, and Pfizer; has received research support and lecture fees from AstraZeneca, Boehringer Ingelheim, Bristol-Myers Squibb, Pfizer, GlaxoSmithKline, and Schering-Plough; has received honoraria from Boehringer Ingelheim; and has received honoraria and travel support from AstraZeneca, Bristol-Myers Squibb, and Pfizer. Dr. Strony is an employee and stockholder of Merck & Co., Inc. Dr. Harrington's disclosures are listed at: http:// med.stanford.edu/profiles/medicine/frdActionServlet?choiceId=showCOIs&&fid= 34240. Dr. Mahaffey's full disclosures prior to August 1, 2013 are available at www.dcri. org; disclosures after August 1, 2013 are available at: http://med.stanford.edu/profiles/ kenneth_mahaffey. All other authors have reported that they have no relationships relevant to the contents of this paper to disclose. Dr. Chen is currently affiliated with Global Clinical Development, Bayer HealthCare Pharmaceuticals Inc., Whippany, New

Manuscript received May 1, 2013; accepted October 1, 2013.

Download English Version:

https://daneshyari.com/en/article/2945877

Download Persian Version:

https://daneshyari.com/article/2945877

<u>Daneshyari.com</u>