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a b s t r a c t

The traditional least squares support vector regression (LS-SVR) model, using cross validation to deter-
mine the regularization parameter and kernel parameter, is time-consuming. We propose a Bayesian
evidence framework to infer the LS-SVR model parameters. Three levels Bayesian inferences are used to
determine the model parameters, regularization hyper-parameters and tune the nuclear parameters by
model comparison. On this basis, we established Bayesian LS-SVR time-series gas forecasting models and
provide steps for the algorithm. The gas outburst data of a Hebi 10th mine working face is used to
validate the model. The optimal embedding dimension and delay time of the time series were obtained
by the smallest differential entropy method. Finally, within a MATLAB7.1 environment, we used actual
coal gas data to compare the traditional LS-SVR and the Bayesian LS-SVR with LS-SVMlab1.5 Toolbox
simulation. The results show that the Bayesian framework of an LS-SVR significantly improves the speed
and accuracy of the forecast.

Copyright � 2011, China University of Mining & Technology. All rights reserved.

1. Introduction

Gas disasters are well known and predictions of gas outbursts
have become of common concern all around the world. In a recent
study, Li and Zhang have proposed a reliablemethod of non-contact
continuousdynamic forecasts [1].However, due to the complexityof
geological conditions, random testing of gas data which contains
a considerable amount of random noise, has caused accurate
prediction of gas emissions to become a worldwide problem. Since
neural networks can approximate any nonlinear function, many
early warning models of coal and gas outbursts have been estab-
lished by means of neural networks. For example, Yang et al.
proposed an improved differential evolutionary neural network
model to predict coal and gas outbursts [2]. Miao et al. proposed
a coal and gas outburst prediction model, combining a neural
network with the Dempster-Shafter evidence [3]. Sa et al. set the
stage for an electromagnetic radiation and neural network, fore-
casting coal and gas outbursts [4]. However, neural networks are
based on the empirical risk minimization principle; hence general-
ization performance of model is poor. Furthermore, neural network
parameters are artificial and established with a great deal of
randomness and are not supported by a relatively prefect theory.

Wang et al. analyzed dynamic time series (the Q sequence) of the
working face of coal and gas outbursts and calculated themaximum
Lyapunov index, the second order Renyi entropy and the correlation
dimension. They proved that the Q sequence has chaotic fractal
features. Their study provided a theoretical basis for a time-series
gas outburst prediction model [5]. A new machine learning algo-
rithm-Support Vector Machine (SVM) has been developed in recent
years. An SVM is based on a structural risk minimization principle
and can therefore be expected to provide a good generalization
performance [6]. The LS-SVR is an improved SVM andwas proposed
by Suykens and Vandewalle in 1999. It has been used in many fields
of engineering. LS-SVR retains structural risk minimization princi-
ples, but changes inequality constraints into equations [7]. Thus,
quadratic programming problems changed into solving a system of
equations, improving the optimization speed of the algorithm.
However, for LS-SVRmodels a regularizationparameter and a kernel
parameter need to be determined. A traditional LS-SVR uses cross-
validation to determine these two parameters, but this method is
very time-consuming, especially when the sample is large, which
makes the LS-SVR less effective for real-time online prediction.

In our investigation, we have applied a Bayesian evidence
framework in order to infer the LS-SVR model parameters. The
basic idea of this Bayesian framework is to maximize the param-
eter distribution a posteriori, so the optimal parameter values
of LS-SVR are obtained by maximizing parameter distribution
a posteriori [8].
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We used three levels of Bayesian inferences to determine the
two model parameters, as well as regularization hyper-parameters
and tuned the nuclear parameters by model comparisons. The time
series of gas outburst data of the Hebi 10th mine working face was
used to validate this model. Simultaneously, the optimal embed-
ding dimensions and delay time of time series were obtained by
a smallest differential entropy method [9,10]. In the end and within
the MATLAB7.1 environment, we used actual coal gas data to vali-
date the feasibility of the algorithm.

2. Basic principle of LS-SVR

Given a sample set D ¼ ðxi; yiÞ, i ¼ 1;/;N;where xi ˛Rm is the
i-th input sample data and yi ˛R the i-th output.

Structural risk minimization is achieved by maximizing the
classification interval between samples in the feature space, so that
the LS-SVR optimization problem can be written as follows [8]:

min
u;b;e
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2
muTuþ 1

2
z
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where 4ð$Þ : Rn/Rnf is the nonlinear mapping function (kernel
function), which maps samples into the feature space; u˛Rnf is the
weight vector, b˛R the bias term, ei ˛R are error variables and m

and z are the adjustable hyper-parameters. Functions that satisfy
Mercer’s theorem can be used as kernel functions. We have opted
for the RBF kernel function:

Kðxi; xÞ ¼ 4ðxiÞT4ðxÞ ¼ exp
�
� kx� xik22=s2

�
It is difficult to solve u directly, because u is in the feature space.

Therefore, a solution will be obtained in the dual space. The
following Lagrange function is introduced:

Lðu; b; e;aÞ ¼ Jðu; eÞ �
XN
i¼1

ai

n
uT4ðxiÞ þ bþ ei � yi

o
(5)

where ai is the Lagrange multiplier.
Because this optimization problem satisfies the Kuhn-Tucker

conditions, we can obtain Eq. (6):8>>>>>>>>>>>>><
>>>>>>>>>>>>>:
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where g ¼ z=m

We can obtain the solution of a least squares regression equa-
tion by solving the following set of equations:
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where U ij ¼ 4ðxiÞT4ðxjÞ ¼ Kðxi; xjÞ; i; j ¼ 1;/;N; a ¼ ½a1;/;aN �,
y ¼ ½y1;/; yN �, 1

! ¼ ½1;/;1�, Thus, we can obtain a and b by
solving Eq. (7). The standard LS-SVRmodel can be drawn as follows:

yðxÞ ¼
XN
i¼1

aiKðx; xiÞ þ b (8)

The g and s values must be pre-determined, when we use the LS-
SVR with the RBF kernel function if we wish to make predictions.

3. LS-SVR within Bayesian inferences

3.1. Inference of the model parameters u and b (Level 1)

Given the data points D ¼ fðxi; yiÞgNi¼1 and the hyper-parame-
ters m and z of model H (an LS-SVR model with the RBF kernel
function), we can obtain the model parameters u and b by maxi-
mizing a posteriori Pðu; bjD; logm; logz;HÞ. In the first level of
inference, application of Bayes’ rule provides for [11]:

Pðu;bjD;logm;logz;HÞ ¼PðDju;b;logm;logz;HÞPðu;bjlogm;logz;HÞ
PðDjlogm;logz;HÞ

(9)

i.e:

Posterior ¼ Likelihood� Prior
Evidence

;

The evidence PðDjlogm; logz;HÞ is a constant, which will be used at
the second inference. If we assume a priori that Pðu; bjlogm; logz;HÞ
is independent of the hyper-parameter z, then:

Pðu;bjlogm; logz;HÞ ¼ Pðu;bjlogm;HÞ:
If we also assume that u is independent of b and the weight

vector u is a Gaussian distribution, then:
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A priori, b can be approximated as a Gaussian distribution, i.e:
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With sb/N, we can obtain a priori the following distribution:
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We assume PðDju; b; logm; logz;HÞ is independent of m. Then:

PðDju; b; logm; logz;HÞ ¼ PðDju; b; logz;HÞ
We assume the sample data points are independent of each

other. It follows that:

PðDju; b; logm; logz;HÞ ¼
YN
i¼1

Pðxi; yiju; b; logz;HÞ (11)

Since Pðxi; yiju; b; logz;HÞfPðeiju; b; logz;HÞ and from (2) we know
the error ei ¼ yi � ðuT4ðxiÞ þ bÞ. If we assume the error has
a Gaussian distribution, then:
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