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a b s t r a c t

Novel solutions that correctly incorporate all electromagnetic interactions arising in inductively coupled
circuits are presented for the case of a coaxial driver and pickup coil probe encircling a long
ferromagnetic conducting rod. The differential circuit equations are formulated in terms of the rod's
impulse response using convolution theory, and solved by Fourier transform. The solutions presented
here are the first to account for feedback between a ferromagnetic conductor and the driver and pickup
coils, providing correct voltage response of the coils. Experimental results, obtained for the case of
square wave excitation, are in excellent agreement with the analytical equations.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Driver-pickup eddy current non-destructive testing is a well-
established method for the inspection of metallic objects [1]. It is
relatively inexpensive, fast and reliable in comparison with other
inspection technologies. These qualities make eddy current a desir-
able inspection method in industry [2,3], where it is employed to
monitor the structural health of industrial assets. To this end,
considerable efforts have been made to develop mathematical
models that enable the interpretation of inspection data. The
common approach is to formulate time-harmonic solutions, which
describe the electromagnetic fields in a system, in order to calculate
the change in a coil's impedance as it interacts with a conducting
structure [4–8]. In a less developed approach, transient eddy current
models consider the voltage induced in a pickup circuit [9–14] given
a prescribed current that has been applied to a driver coil. Under
voltage control, changing material characteristics and inspection
geometries will distort the resultant current signal through feedback
effects. In order to circumvent the feedback challenge, the common
approach has been to employ current control systems. In such
systems, however, the level of signal distortion from feedback effects
is largely dependent on the quality of the current generator. Conse-
quently, a persistent challenge for the development of transient
driver-pickup models, particularly under voltage control, has been a
lack of experimental agreement, particularly in cases where ferro-
magnetic materials, such as steel, exhibit stronger inductive coupling

effects. In transient eddy current experiments, for instance, agree-
ment with experimental data is limited to later times when feedback
effects become less prominent [11]. In other cases, authors often
assume non-magnetic samples for experimental validation [1–4],
constrained sample geometries [11], and resort to fitted parameters
[3] or convenient smoothing functions [9]. In some instances [9–13],
analytical models have been presented with limited or no experi-
mental support. In other cases, solutions are most frequently
formulated for time-harmonic excitations for applications in conven-
tional eddy current [15], and less often for general excitations, which
include square waveforms for applications in pulsed eddy current.

Recently, a novel analytical approach, whereby electromagnetic
field solutions are incorporated directly into Kirchhoff's circuit
equations, and solved in terms of an applied voltage (instead of
current), was developed [16]. This approach accounts for all electro-
magnetic interactions arising in inductively coupled systems and,
thus, addresses the feedback problem. The theory was applied to the
simple case of a driver coil encircling a ferromagnetic conducting rod
[17]. The coil's calculated response to a step excitation was in
excellent agreement with experimental results. In particular, it was
shown that the interaction between the conductor and the driver coil
could be understood and represented as a complex frequency-
dependent self-inductance coefficient. Previous works make mention
of complex inductances [18], but this phenomenon was not clearly
described in terms of electromagnetic processes. The analytical
expression for this complex coefficient, which accounts for real
(inductive) and imaginary (resistive) elements associated with the
rod, fell out of the theory naturally. Thus, electromagnetic field
theory and circuit theory have been intuitively combined to provide
a complete model of eddy current induction phenomena.
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In this work, the theory developed in [16,17] is extended to include
a pickup coil. The coupled circuit equations, which describe the
currents flowing in the driver and pickup, are formulated in terms
of a conducting and ferromagnetic rod's impulse response using
convolution theory, and solved by Fourier transform. The resulting
solutions account for the self-coupling of the driver and pickup coils
through the sample (complex self-inductance), and for the mutual
coupling of the coils through the sample (complex mutual induc-
tance). All electromagnetic coupling and feedback effects are, there-
fore, incorporated into the model. Experimental results, obtained for
the case of square wave excitation, are in excellent agreement with
the analytical equations. The exact time-harmonic solutions, for
applications in conventional eddy current testing, are also given.

2. Theory

A description of the model geometry is as follows. A pickup coil is
centered about the axis of a larger encircling driver coil, as shown in
Fig. 1, where b14a14b24a2. These coaxial coils are centered about
the axis of a long, ferromagnetic and conducting rod.

In accordance with Maxwell's equations, time-varying currents
flowing in the driver and pickup coils will induce eddy currents
within the volume of the rod. These eddy currents give rise to
transient magnetic fields which, in turn, induce currents within
the coils. The circuit equations describing the resultant time-
dependent currents i1 tð Þ and i2 tð Þ flowing in the driver and pickup,
respectively, are written using Kirchhoff's laws in the following
general form

R1i1 tð Þ ¼ v tð Þþε1 tð Þ ; ð1Þ

R2i2 tð Þ ¼ ε2 tð Þ ; ð2Þ
where v tð Þ is any time-dependent excitation voltage - step, harmonic,
multi-frequency, ramp, saw-tooth, etc. - R1 and R2 are the total circuit
resistances, and ε1 tð Þ and ε2 tð Þ are the total time-dependent voltages
induced in the driver and pickup coils, respectively. Both ε1 tð Þ and
ε2 tð Þ have three components; one arising from the field generated by
the driver coil, another from the transient field generated by the
receiver coil and the third from transient eddy current and magne-
tization fields emanating from a ferromagnetic conducting sample.

Following the steps in [16,17], induced voltages ε1 tð Þ and ε2 tð Þ are
expressed as the convolution of the system's impulse response with
the as yet unknown time-dependent current functions i1 tð Þ and i2 tð Þ
such that

ε1 tð Þ ¼ � 2πN1

l1 b1�a1ð Þ
d
dt
∯S1 r ψ̂1 r; z; tð ÞþΞ̂1 r; z; tð Þ

� �
ni1 tð Þ

�
þ ψ̂2 r; z; tð ÞþΞ̂2 r; z; tð Þ
� �

ni2 tð Þ
�
drdz ; ð3Þ

ε2 tð Þ ¼ � 2πN2

l2 b2�a2ð Þ
d
dt
∯S2 r ψ̂1 r; z; tð ÞþΞ̂1 r; z; tð Þ

� �
ni1 tð Þ

�
þ ψ̂2 r; z; tð ÞþΞ̂2 r; z; tð Þ
� �

ni2 tð Þ
�
drdz ð4Þ

where ψ̂ r; z; tð Þ ¼ ψ̂ r; zð Þδ tð Þ corresponds to the magnetic vector
potential generated by a coil carrying an impulse current, and
Ξ̂ r; z; tð Þ is the impulse response of the conducting structure in the
air region surrounding the rod. The number in the subscript of ψ̂ and
Ξ̂ specifies the coil fromwhich the potentials arise, whereas S1 and S2
specify the coil cross-section over which the potential is integrated.
Eqs. (3) and (4) are substituted into the circuit equations in (1) and (2),
to which a Fourier transform, defined as ℱ f tð Þ� �� R1

�1 f tð Þe� jωtdt
where ω is angular frequency, is applied giving

R1I1 ωð Þ ¼ V ωð Þ� jω
2πN1

l1 b1�a1ð Þ∯S1r ψ̂1 r; zð ÞþΞ̂1 r; z;ωð Þ
� �

I1 ωð Þ
�

þ ψ̂2 r; zð ÞþΞ̂2 r; z;ωð Þ
� �

I2 ωð Þ
�
drdz ; ð5Þ

R2I2 ωð Þ ¼ � jω
2πN2

l2 b2�a2ð Þ∯S2 r ψ̂1 r; zð ÞþΞ̂1 r; z;ωð Þ
� �

I1 ωð Þ
�

þ ψ̂2 r; zð ÞþΞ̂2 r; z;ωð Þ
� �

I2 ωð Þ
�
drdz ; ð6Þ

where I ωð Þ �ℱ i tð Þ� �
. Thus, transformed current functions I1 ωð Þ and

I2 ωð Þ can be removed from the integrals and the coupled equations
can be solved. For conciseness, and in anticipation of the final result,
the following definitions are made

L1 �
2πN1

l1 b1�a1ð Þ
Z l1=2

� l1=2

Z b1

a1
rψ̂1 r; zð Þdrdz; ð7Þ

L2 �
2πN2

l2 b2�a2ð Þ
Z l2=2

� l2=2

Z b2

a2
rψ̂2 r; zð Þdrdz ; ð8Þ

M� 2πN1

l1 b1�a1ð Þ
Z dþðl1=2Þ

d�ðl1=2Þ

Z b1

a1
rψ̂2 r; zð Þdrdz¼ 2πN2

l2 b2�a2ð Þ
Z dþðl2=2Þ

d�ðl2=2Þ

Z b2

a2
rψ̂1 r; zð Þdrdz;

ð9Þ

ℒ1 �
2πN1

l1 b1�a1ð Þ
Z l1=2

� l1=2

Z b1

a1
rΞ̂1 r; z;ωð Þdrdz ; ð10Þ

ℒ2 �
2πN2

l2 b2�a2ð Þ
Z l2=2

� l2=2

Z b2

a2
rΞ̂2 r; z;ωð Þdrdz ; ð11Þ

ℳ� 2πN1

l1 b1�a1ð Þ
Z dþðl1=2Þ

d�ðl1=2Þ

Z b1

a1
rΞ̂2 r; z;ωð Þdrdz

¼ 2πN2

l2 b2�a2ð Þ
Z dþðl2=2Þ

d�ðl2=2Þ

Z b2

a2
rΞ̂1 r; z;ωð Þdrdz ; ð12Þ

where L1 and L2 are the self-inductance coefficients of the driver and
pickup coils respectively and M is the mutual inductance coefficient.
The limits of integration correspond to the dimensions and relative
positions of the coils shown in Fig. 1. Expressions for Eqs. (7)–(9) have
been developed previously in [16] and are given here as

L1 ¼
8μ0N

2
1

l21 b1�a1ð Þ2
Z 1

0

Z 1

0

γ
R b1
a1

rJ1 γr
� �

dr
� �2

sin 2 λl1
2

� �
λ2 γ2þλ2
� � dγdλ ; ð13Þ

Fig. 1. Coaxial driver coil, pickup coil and rod configuration.
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