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a b s t r a c t

A solution is presented for the case of a driver coil encircling a ferromagnetic conducting rod. The
differential circuit equation is formulated in terms of the rod's impulse response using convolution
theory, and solved by Fourier transform. The final solution accounts for feedback between the
ferromagnetic rod and the driver coil, providing correct voltage response of the coil. Also arising from
the solution is an analytical expression for the complex inductance in the circuit, which accounts for real
(inductive) and imaginary (loss) elements associated with the rod. Experimental results, obtained for the
case of square wave excitation, show excellent agreement.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Research in eddy current theory has grown considerably in recent
years due to increasing demands for magnetically sensitive non-
destructive testing capabilities. Aging nuclear and petrochemical
facilities, as well as aircraft and naval fleets, which need to be
monitored and maintained, are examples of the benefactors of such
technologies. Much work [1–13] has been devoted to the development
of theoretical models, which aim to predict induced voltages or
impedance changes in interrogating coils for applications in eddy
current testing. To date, analytical models that predict coil impedance
change as a function of an applied sinusoidal current frequency have
been very successful. By contrast, transient eddy current models have
been developed on the assumption of an invariant current excitation,
as was done in [14–16] for example, which is problematic, since
changing inspection conditions and variations in material character-
istics modify the applied current signal via magnetic coupling effects.
A limited number solutions predicting voltage transients have been
developed, and achieving agreement between theory and experiment
remains a challenge, particularly at early times and when considering
ferromagnetic materials [11]. Ferromagnetic conductors, such as steel,
exhibit stronger and thereby more complicated feedback effects
between driver and sample circuit elements. Since steel is a commonly
encountered construction material, complete models, which correctly
account for these complex electromagnetic interactions, are of sig-
nificant interest. This work considers a coil's voltage response to an
abruptly applied voltage step, instead of a current step. Unlike current,

a prescribed excitation voltage will remain invariant under changing
inspection conditions. Ultimately, model-assisted analyses of experi-
mental data may provide a direct method for the extraction of values
such as liftoff, wall thickness, conductivity, permeability and other
material and geometrical characteristics of interest.

Previously [17], an approach, in which differential circuit equations
were formulated in terms of the magnetic fields arising in an inductive
system, was developed and applied for the simple case of a pair of
coaxial coils. Expressions, which corresponded to the self- and mutual
inductance coefficients, arose naturally from the theory. In this work,
the theory is extended to consider the inductive effects of ferromag-
netic and conducting structures on a driver coil. In particular, it will be
shown that an additional inductance coefficient, which describes the
inductive coupling of the coil with a structure, emerges from the
theory. Experimental results validate the theory. The resulting analy-
tical model provides a complete understanding of the way in which
geometrical and material parameters affect measured coil responses.
Furthermore, the theory may be extended to systems containing
multiple sensing coils. This will be the focus of subsequent works
prepared by the authors.

In following with the theory developed in [17], the impulse
response of a long ferromagnetic conducting rod will be directly
incorporated into the differential circuit equation via a convolution
integral [18], and the resulting equation will be solved by Fourier
transform.

2. Theory

A circular driver coil is centred about the axis of a long,
ferromagnetic and conducting rod with magnetic permeability μ
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and conductivity σ as depicted in Fig. 1. In accordance with
Maxwell's equations, a time-varying current flowing in the driver
coil will induce eddy currents within the volume of the rod. These
eddy currents give rise to a transient magnetic field which, in turn,
generates an opposing current within the driver coil. The magnetic
vector potential, arising from the magnetization and induction of
eddy currents within a rod following an impulse excitation, is
developed first.

The solution for the air region surrounding the rod is the
superposition of magnetization and eddy current fields together
with the time-dependent excitation field generated by the coil.
Consider the case in which the coil carries a current impulse,
i tð Þ ¼ δ tð Þ, where δ tð Þ is a Dirac delta function [18]. Then, the system
impulse response outside of the rod, defined as Âair r; z; tð Þ, is the
superposition of an impulse excitation, denoted ψ̂ r; z; tð Þ, together
with the impulse response of the rod, defined as Ξ̂ r; z; tð Þ, accord-
ing to

Âair r; λ; tð Þ ¼ ψ̂ r; λ; tð Þþ Ξ̂ r; λ; tð Þ: ð1Þ

The impulse excitation field has been developed in [13] and is
given here as

ψ̂ r; λ; tð Þ ¼ ψ r; λð Þδ tð Þ ¼ 2μ0n
sin λl
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ð2Þ
where l is the coil's length, a and b are its inner and outer radii, as
shown in Fig. 1, n�N=l b�að Þ is the coil's turn density, and δ tð Þ is
the current unit impulse.

The rod's impulse response for the air region, Ξ̂ r; z; tð Þ, which
describes the magnetic vector potential associated solely with
magnetization and eddy current effects, obeys Laplace's equation
[19]. The vector Laplacian is recast into its differential operator
form for the appropriate cylindrical geometry, and the resulting
expression's axial coordinate, z, is separated by means of a Fourier
cosine transform [20] with parameter λ such that
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Ξ̂ r; λ; tð Þ ¼ 0 : ð3Þ

Eq. (3) is Bessel's modified differential equation. The allowable
solution is the first-order modified Bessel function of the second
kind written as

Ξ̂ r; λ; tð Þ ¼A λ; tð ÞK1 λrð Þ; ð4Þ

where A λ; tð Þ is an unknown coefficient. Eqs. (4) and (2) are
substituted into (1), and a Fourier transform, defined as
ℱ f tð Þ� �� R1

�1 f tð Þe� jωtdt with angular frequency ω, is applied to
the resulting expression given as follows:

Âair r; λ;ωð Þ ¼ ψ r; λð ÞþA λ;ωð ÞK1 λrð Þ; ð5Þ
where Âair r; λ;ωð Þ ¼ℱ Âair r; λ; tð Þ

n o
. It is noted that the Fourier trans-

form of ψ̂ r; λ; tð Þ is frequency-independent since R1�1 δ tð Þe� jωtdt ¼ 1.
The diffusion equation [19], which governs the time-dependent

evolution of the magnetic vector potential inside the rod, is
written as

∇2Ârod r; z; tð Þ ¼ μrμ0σ
∂
∂t
Ârod r; z; tð Þ; ð6Þ

The z coordinate is separated by means of a Fourier cosine
transform and the t coordinate separated by a Fourier transform,
such that
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Ârod r; λ;ωð Þ ¼ jωμrμ0σ Ârod r; λ;ωð Þ: ð7Þ

The allowable solution to the differential equation in (7) is the
first-order modified Bessel function of the first kind written as

Ârod r; λ;ωð Þ ¼ℬ λ;ωð ÞI1 Λrð Þ; ð8Þ
where ℬ λ;ωð Þ is an unknown coefficient and Λ is defined as

Λ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2þ jωμrμ0σ

q
: ð9Þ

Exterior and interior solutions (5) and (8), respectively, are
matched at the rod's boundary, at which r¼ c as shown in Fig. 1,
using the appropriate boundary conditions [21]

Âair c; λ;ωð Þ ¼ Ârod c; λ;ωð Þ; ð10Þ

μr Âair c; λ;ωð ÞþcÂ0
air c; λ;ωð Þ

	 

¼ Ârod c; λ;ωð ÞþcÂ0

air c; λ;ωð Þ; ð11Þ

where the primes denote differentiation with respect to r. Bound-
ary Eqs. (10) and (11) are solved for unknown Bessel coefficients
A λ;ωð Þ and ℬ λ;ωð Þ:

A λ;ωð Þ ¼ 2μ0n
Z b

a
rK1 λrð Þdr sin

λl
2
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λ

μrλI0 λcð ÞI1 Λcð Þ�ΛI1 λcð ÞI0 Λcð Þ
μrλK0 λcð ÞI1 Λcð ÞþΛK1 λcð ÞI0 Λcð Þ;

ð12Þ

ℬ λ;ωð Þ ¼ 2μrμ0n
Z b

a
rK1 λrð Þdr sin

λl
2
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μrλK0 λcð ÞI1 Λcð ÞþΛK1 λcð ÞI0 Λcð Þ :

ð13Þ
Finally, the frequency-domain impulse responses are written as

Ξ̂ r; z;ωð Þ ¼ 1
π

Z 1

0
A λ;ωð ÞK1 λrð Þ cos λzð Þdλ; ð14Þ

Ârod r; z;ωð Þ ¼ 1
π

Z 1

0
ℬ λ;ωð ÞI1 Λrð Þ cos λzð Þdλ; ð15Þ

where A λ;ωð Þ and ℬ λ;ωð Þ are given in (12) and (13), respectively,
and Λ is defined in (9).

In what follows, the rod's impulse response in the region
containing the driver coil, Eq. (14), is substituted into the differ-
ential circuit equation, as performed previously [17]. The circuit
equation, which describes the resultant time-dependent current i
flowing in the driver coil, is written using Kirchhoff's laws in the
following general form

Ri tð Þ ¼ v tð Þþε tð Þ; ð16Þ
where v tð Þ is any time-dependent excitation voltage—step, har-
monic, multi-frequency, ramp, saw-tooth, etc.—R is the total driver
circuit resistance, and ε tð Þ is the total time-dependent back-emf
induced in the driver coil. The function ε is expected to have twoFig. 1. Diagram of a coil encircling a long rod.
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