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a b s t r a c t

This one-dimensional time-domain finite-element model achieves accurate quantitative modelling of
ultrasonic wave propagation in multi-layered structures. First, a sinusoidal wave toneburst is sent into
a single layer of material exhibiting inherent material nonlinearity characterised by the nonlinear
parameter β and thick enough for the toneburst received in through transmission to be resolved. The
signal processing protocol that yields the theoretically correct quantitative value of β involves
measuring the received toneburst for several propagation distances as well as the use of scaling
factors taking into account the fast Fourier transform implementation, input signal windowing and
material damping. Using that model configuration, model parameters (element size, time step,
frequency step, input pressure, etc.) are then optimised and chosen quantitatively to generate accurate
results. Finally, these model parameters are used for cases of interest where the configuration is not
such that the exact β value can be obtained – e.g. thinner sample, pulse-echo etc. but where confidence
in the results remains. This quantitative model that can be used for multi-layered structures provides a
tangible resource useful to NDE engineers: a new prediction tool expected to enable them to choose
the experimental set-up, driving frequency and post-processing method that would optimise kissing
bond detection capability.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The use of nonlinear ultrasonic behaviour in non-destructive
evaluation (NDE) is an approach shown to be sensitive to very
small defects such as distributed micro-cracking [1,2] and small
delaminations in composites [3,4], fatigue, thermal and chemical
damage [5] as well as other contact type defects [6] including tight
cracks, disbonds and weakening of adhesive bonds [7–12]. Non-
linear ultrasonics has therefore already been used in NDE as a tool
for material characterisation [13–16], for damage detection look-
ing at the internal microstructural properties of materials [3] and
for assessing the quality of adhesive bonds [7,11,12] where non-
linear binding forces cause a nonlinear modulation of transmitted
or reflected ultrasonic waves [9].

With advantages such as weight saving and higher fatigue
strength, adhesive bonding is increasingly being used in the
automotive and aerospace industries. There is therefore a real
need to identify the boundary imperfections that lead to adhe-
sion failure. But while the detection of finite thickness disbonds
generally presents few problems, zero-volume disbonds or kis-
sing bonds [17] are extremely difficult to detect and might benefit

from the use of nonlinear ultrasonics. It has been shown that
such imperfect interfaces introduce a higher degree of nonlinear-
ity as a result of contact acoustic nonlinearity (CAN) [1,18]. When
an ultrasonic wave interacts with such a defect, it is distorted,
and this distortion can be used to detect the presence of a kissing
bond [18–21] or obtain information on the adhesive bond
strength [10].

In Richardson's model [22], the level of nonlinearity is
explained by the intermittent opening and closing of the gap.
Biwa's [18] theoretical analysis for the nonlinear behaviour of
elastic waves propagating through a contact interface is commonly
referred to. Yan [19] carried out similar experimental work on
aluminium blocks [20] that looked promising. However, experi-
mental results obtained on multi-layered structures like adhesive
joints were not conclusive [8,9] and underline the challenges
when carrying out such nonlinear measurements – either the
harmonic generation is small with the harmonics sitting barely
above noise level, or the acoustic power required to generate
nonlinear effects introduces instrumentation nonlinearities and/or
significant new damage [23]. This likely explains the difficulty the
nonlinear ultrasonics community has had in making such a
scheme operational.

Numerical models have been developed to simulate wave
propagation through a nonlinear interface but only between
homogeneous and linear solids like in the case of a crack [24].
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Spring models have been used to measure the ultrasonic response
from imperfect solid–solid contact interfaces [24,9,18] and spring-
mass models [21,25] when taking into account changes in density
due to pores or inclusions at the interface.

However, very little work has been done on wave propagation
in multi-layered structures with both linear and nonlinear inter-
faces, made up of various materials exhibiting some degree of
inherent nonlinearity. Furthermore, no theoretical predictive stu-
dies exist for accurate quantitative modelling.

The authors have therefore developed a generalised quantita-
tive one-dimensional (1-D) finite-element (FE) type model for
simulating nonlinear ultrasonic wave propagation in such struc-
tures. In the current paper, the foundations of this model are
presented by looking at single-layer structures. The purpose of
developing such a model is to provide not only a better under-
standing of nonlinear wave propagation in multi-layered struc-
tures but also a tangible resource useful to NDE engineers: a new
prediction tool expected to enable them to choose the experi-
mental set-up, driving frequency and post-processing method that
would optimise kissing bond detection capability.

Section 2 describes the theoretical basis of the method and the
mathematical description of the model. However, the nonlinear
phenomenon of interest is so weak that its accurate simulation is
potentially compromised by different parameters. This is the
reason why even such a simple FE model needs detailed investiga-
tion and refinement in order to obtain correct results. The
modelling guidelines that ensure the model's accuracy are there-
fore given in Section 3. Example results for longitudinal wave
propagation in nonlinear materials are presented in Section 4.

It should be noted that the same capability now exists in
commercial packages such as the Comsol Multiphysics but here
the authors are trying to provide practical guidelines for FE users
since this is a relatively immature field.

2. Model development

2.1. Theory

The derivation of the nonlinear ultrasonic wave equation can
be found in numerous works [8,26] and in this paper, the standard
approach described by Meurer in [27] was followed. In this 1-D
problem, the nonlinear equation for longitudinal waves in damped
isotropic materials can therefore be written as
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where ρ is the density, u(x,t) is the particle displacement in the x-
direction, K2¼ρc2 is the bulk modulus where c is the sound
velocity, β¼ �ð3K2þK3=K2Þ is the nonlinear parameter and gives
a measurement of the material bulk nonlinearity where K3 is the
third-order elastic constant, δ is the damping coefficient and Fext(x,t)
is the externally applied force per unit volume.

For the case of a semi-infinite material (x40) where the
external force applied at the structure boundary (x¼0) is sinusoi-
dal, the approximate solution for the nonlinear wave Eq. (1) can be
found through use of a perturbation technique [28,26]
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where k0¼2πf0/c is the wavenumber, f0 is the frequency of the
sinusoidal force, x is the propagation distance, A0 is the direct
current (DC) amplitude, A1 is the amplitude of the centre

frequency output signal and An (n41) is the amplitude of the
nth harmonic in the frequency spectrum.

In other words, when a sinusoidal wave of amplitude Aap and
frequency f0 (input signal) is sent into a linear medium, the
ultrasonic wave measured at a distance x from the structure
boundary (output signal) is a sinusoidal wave of amplitude A1

and frequency f0. If the medium is nonlinear, then sinusoidal
waves of amplitude An of frequency nf0 where n41 called higher
harmonics are generated in the output signal. Higher harmonics
can be seen in the frequency spectrum of the output signal, and
their amplitudes measured.

If the amplitudes of the fundamental and second harmonic can
be measured after a certain propagation distance x, then the
nonlinear parameter β for the undamped material can be obtained
from

β¼ 8

k20x
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1
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which involves the calculation of the nonlinear ratio Φ

Φ¼ A2

A2
1

ð4Þ

The technique that involves the measurement of β and Φ is called
the harmonic generation technique.

2.2. Theoretical formulation for a one-dimensional finite-element
model

The following FE model is a 1-D discretisation of the continuum
into line elements of length Δx, uniform cross-sectional area A and
bulk modulus K2. Each element is subjected to nodal forces
resulting in stresses s and small nodal displacements Δu and
strains Δε. Applying the principle of dynamic virtual work, the
work done within an element is equal to the external work done
by the forces applied at its nodes.

The resulting discretised equation gives the equilibrium equa-
tion for each element

fMge €uþfDge _uþ fKLgeþfKNLðuÞge
� �

u¼ F ð5Þ
where {M}e, {D}e, {KL}e and {KNL}e are the mass, damping, linear
stiffness and nonlinear stiffness element matrices.

These element matrices are then put into place in the global
matrix equation by adding each element of the structure

M €uþD _uþ KþKNLðuÞ
�
u¼ Fext

� ð6Þ
where M, D, K and KNL(u) are the mass, damping, stiffness and
nonlinear stiffness matrices respectively, and u is the displace-
ment vector with its associated derivatives with respect to time
( €u¼ ð∂2u=∂t2Þ and _u¼ ð∂u=∂tÞ).

The time discretisation of €u and _u is accomplished by central
and backward difference approximations respectively and Eq. (6)
is transformed into the following time-domain computational
algorithm

utþΔt ¼Δt2M�1F�Δt2M�1ðKþKNLðutÞÞut

þΔtM�1Dðut�Δt�utÞþ2ut�ut�Δt ð7Þ
where Δt is the time step, and utþΔt , ut , ut�Δt are values of
displacements at the three consecutive time instants tþΔt, t and
t�Δt.

The FE model was implemented in Matlab. The model was
validated in the linear regime against experimental data and
verified against an analytical model using an input impedance
approach analogous to transmission line theory [29]. Validation for
nonlinear wave propagation was assumed to be achieved when
the specified material nonlinearity parameter β could be recovered
from the model output.
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