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a b s t r a c t

This paper proposes an effective method for corner-shaped components inspection using ultrasonic
phased array. We first improved the finite-difference time domain (FDTD) method by way of averaging
properly the different ultrasonic parameters of media on the both sides of interface to simulate ultrasonic
wave propagation in dual-layered media. Then, an inspection method for corner-shaped structures using
ultrasonic phased array and an iterative calculation approach of delay time based on Snell's law for
complicated geometries were put forward and described in detail. Experiments on an aluminum alloy
2014 sample were conducted to validate the modeling results and the inspection method. Finally,
practical application was carried out to image and size the defect in carbon fiber reinforced plastic (CFRP)
corner-shaped specimen, yielding experiment results that are in good quantitative agreement with the
true values.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Corner-shaped components, such as spars, strings and top-hat
structures, have been widely applied in aerospace industry in
recent years. Since the equivalent stress is mainly concentrated in
and around the radius parts, the reliability of these structures
could be seriously compromised by flaws introduced during manu-
facture, such as delamination, debonding and fiber breakage [1].
It is thus imperative to develop a rapid and effective flaw inspection
method for corner-shaped components used in aerospace industry.
However, the ultrasonic inspection method using conventional
monolithic transducers, when used on such components, could
lead to degradation of performance mainly due to several inherent
disadvantages including uncovered scanning area, wave beam
disorientations and distortions. By contrast, ultrasonic phased array
technique, which provides improved sensitivity and advantageous
flexibility, can be used to overcome these difficulties in nondes-
tructive testing (NDT) industry [2].

Ultrasonic array transducer is composed of multiple piezo-
electric elements excited with properly time-delayed pulses to
sweep the wave beams over the interesting area of the specimen,
such that the wavefronts of all the individually delayed signals will
then form Huygens' interference patterns. By phasing each array
element its relative transmission time, the parameters of wave

beams such as focus depths and steering angles could be adjusted,
leading to improved capability of imaging defects located in
regions difficult to access. Furthermore, the near real-time elec-
tronic scanning can be used to replace the manual or automated
motion of conventional monolithic transducer for better efficiency,
and the shape of the array transducer can be customized to match
the specimen geometry. Previous studies of ultrasonic phased
array technique applied in NDT include inspection of titanium
forgings in aerospace industry [3], low-pressure turbine discs [4]
and welds [5] in nuclear power plant.

Considering the costly and intricate set-up as well as the time-
consuming experimental procedure, it is unfeasible to conduct
NDT experiments by applying the ultrasonic phased array method
on a large number of test specimens with various geometrical
shapes. On the other hand, the FDTD method, as one of the most
powerful and versatile numerical analysis techniques, has been
proved to be especially suitable to simulate propagation of ultra-
sonic wave in a test specimen and its interaction with internal
defects [6]. In this study, the FDTD method was used to simulate
the whole process of ultrasonic waves generation and reception so
as to optimize inspection parameters such as focus depths and
steering angles.

This paper is arranged in the following manner. We firstly
improve the stability of the traditional FDTD formulation by
averaging material ultrasonic parameters on both sides of the
material interface. Then the scheme of the corner-shaped compo-
nent inspection method is presented and the calculation of delay
time is elaborated. Subsequently, a 2-dimensional implementation
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of the improved FDTD method is performed to image and locate the
internal defect in a 30 mm thick aluminum alloy 2014 corner-shaped
test specimen. Finally, the experiment for a CFRP corner-shaped
specimenwith an artificial delamination defect (10 mm�5 mm film)
is conducted using a 5 MHz, 32 elements linear array transducer to
verify the correctness of the inspection method.

2. Improved FDTD formulation

One of the key issues with numerical algorithms that must be
considered is numerical stability [7]. The fundamental condition
for the stability of finite-difference algorithm, which relates the
size of the time increment to the spacing of the discrete nodes in
the FDTD grid is the well-known Courant stability condition. In
traditional FDTD algorithm, the finite-difference algorithm is
stable in most cases when the Courant condition is satisfied. For
corner-shaped component, the inspection surfaces of specimen are
irregular so that the linear array probes cannot be simply applied
in direct contact. To solve this problem, typically a water path or
specially profiled wedge has to be used to couple the array. In this
case, ultrasonic waves emitted from probe have to propagate
through two distinct media: the coupling layer and specimen.
However, when there are remarkable differences between the
ultrasonic properties (such as wave speed and density) of the two
adjacent media, the traditional FDTD algorithm turns out to be
unstable based on the Courant stability condition, and a more
restrictive condition for the stability need to be imposed [8].

In this section, we show that the conventional FDTD algorithm
can be improved by way of averaging properly the ultrasonic
parameters of media on the both sides of interface, so that the
Courant condition sufficient condition for stability and no other
conditions will be needed.

2.1. Wave equation

The 2-dimensional FDTD algorithm for the simulation of elastic
wave propagation is based on a first order velocity–stress finite-
difference method. The elastic wave equations [9] are given by
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Here, νx and νz are the velocity vectors; sxx, szz and sxz are the
stress tensors; ρ is the medium density; C11, C13, C33 and C55 are
the medium elastic constants. For a homogeneous isotropic
material, the elastic constants can be expressed as

C11 ¼ C33 ¼ λ0 þ2μ0

C13 ¼ λ0

C55 ¼ μ0

8><
>: ð6Þ

Here, λ0 and μ0 are Lame's constants.
The finite-difference discretization of the set of equations leads

to a staggered finite-difference grid [10], as shown in Fig. 1. Here,
the space is discretized into a set of points uniformly spaced in
each direction with integer or semi-integer multiples of distance
intervals Δx and Δy, and similarly the time into instants with

integer and semi-integer multiples of a given time interval Δt.
sxx and szz represent normal stresses at the nodes, whereas the
velocity variables νx and νz , as well as the shear component sxz are
variables on the grid half-spatial steps away from the nearest
node. The velocity and stress components in the grid are
unknowns offset by Δt=2 in time domain. This leads to a leap-
frog scheme in which the velocity components are calculated
during the first half-time step Δt=2, then stress components are
updated in the next half-time step. In the next Δt=2, the velocity
components at ΔtþΔt=2 are calculated using the stress compo-
nents updated at the end of the first time step Δt.

2.2. Improving the FDTD formulation

In order to enhance the stability of the finite-difference algo-
rithm for elements on the interface of two remarkably different
materials, the two material parameters are averaged for the field
components on both sides of the interface. A part of 2-dimensional
finite-difference grid across two different media is shown in Fig. 1.
The velocity component νx lies on the vertical boundary, whereas
νz is placed on the horizontal boundary. The only stress compo-
nent that is placed on the boundary is the shear stress sxz . A linear
averaging procedure is presented which is derived in a straightfor-
ward manner from the governing equations in integral form.

The velocity components are firstly considered for the hori-
zontal particle velocity νx, the procedure for averaging the material
density on vertical boundary is derived from Eq. (1).
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where the integration is carried out over a rectangular area equiva-
lent to the size of one box of the finite-difference grid. The horizontal
and vertical ranges of integration are

ði�1=2Þdxrxr ðiþ1=2Þdx
ðk�1Þdzrzrkdz

(

where i, k¼1, 2, …, N are the node indices of the 2D grid.
This integral is then discretized into the following difference

function.
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The material densities of the two media are thus linearly averaged
for the velocity components on the boundary and the vertical
velocity νz is arranged in the same way.

Fig. 1. 2-Dimenional finite-difference grid.
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