
Real-time full matrix capture for ultrasonic non-destructive testing
with acceleration of post-processing through graphic hardware

Mark Sutcliffe a,b,n, Miles Weston b, Ben Dutton b, Peter Charlton a, Kelvin Donne a

a Swansea Metropolitan University, Mt Pleasant Campus, Swansea SA1 6ED, UK
b TWI NDT Validation Centre (Wales), ECM2, Heol Cefn Gwrgan, Margam, Port Talbot, SA13 2EZ, UK

a r t i c l e i n f o

Article history:

Received 23 February 2012

Received in revised form

19 June 2012

Accepted 20 June 2012
Available online 4 July 2012

Keywords:

Ultrasonics

Graphic-processing

Arrays

Post-processing

CUDA

Full matrix capture

a b s t r a c t

Full matrix capture allows for the complete ultrasonic time domain signals for each transmit and

receive element of a linear array probe to be retrieved. While it is more common to use full matrix

capture to post-process data to allow for electronic steering, focusing and imaging after the initial

inspection processes, due to the data-acquisition and performance limitations of the focusing

algorithms real-time inspection systems are not yet common place.

This paper investigates several algorithm optimisation techniques utilising standard in-expensive

PC architecture with parallelisation undertaken by the graphic processing unit. This approach is further

combined with several other software engineering optimisation techniques including threaded data-

capture, the use of look-up tables and half-matrix implementation to produce a real-world inspection

scenario for benchmark and performance analysis.

Experimental results are presented indicating that high frame rates inclusive of data-acquisition

and image render are achievable with 32 active transmit and receive elements. This approach is shown

to offer significant performance advantages with low implementation and development costs.

Crown Copyright & 2012 Published by Elsevier Ltd. All rights reserved.

1. Introduction

In recent years the use of array transducers in the field of
ultrasonic non-destructive testing (NDT) has become common
place [1]. They are now routinely used for lab and site based
inspections across a range of fields which include oil and gas,
power generation, aerospace and marine. The main attraction of
arrays over conventional single crystal transducers is their ability
to electronically focus, steer and sweep ultrasonic energy with an
almost infinite number of combinations. There are several bene-
fits which can result from this: electronic beam steering and
sweeping minimises mechanical transducer movements. This
improves the inspection coverage on components with limited
surface access.

Full Matrix Capture (FMC) is an ultrasonic data acquisition
process that utilises phased array probes to capture the complete
time domain signals for each transmit and receive element [2].
The technique has evolved from the synthetic transmit aperture
method commonly used in medical ultrasound [3], and uses a
‘transmit on one and receive on all’ data capture approach.
Initially a single element in the array is used as a transmitter,

while all elements then receive (see Fig. 1). This process repeats until
all elements in the array have been fired. Therefore a transducer
containing n elements will generate a matrix of n2 A-scans, known as
the full matrix of data. Since only energy from a single element is
present in the test structure at any moment in time, the FMC data
acquisition process is commonly referred to as a sequential trans-
mission technique.

The sequential nature of FMC, and the subsequent focusing
algorithm requires a more computationally intensive post-pro-
cessing approach than traditional inspection techniques, as the
full matrix of data is shown to be substantially larger. Given these
limiting factors FMC systems tend to provide a much slower
inspection technique, with focusing often done after the inspec-
tion process on data acquired at an earlier point in time.

While computing processing power has increased exponen-
tially over many years high performance post-processing of large
data is often best performed in parallel. Suitability for parallelisa-
tion must first be explored, with several parallelisation options
currently available; including execution of code on a PC Cluster,
targeting the system to a Field Programmable Gate Array (FPGA)
or the execution of code over multiple threads on a standard PC.
For real-time execution issues of latency (e.g. the speed at which
data can be sent and received from the PC Cluster) is also a factor,
as is complexity of code and threading concurrency.

This paper suggests several optimisation approaches to speed
up the FMC inspection process with particular emphasis on data

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/ndteint

NDT&E International

0963-8695/$ - see front matter Crown Copyright & 2012 Published by Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.ndteint.2012.06.005

n Corresponding author at: Swansea Metropolitan University, Mt Pleasant

Campus, Swansea, SA1 6ED, UK.

E-mail address: dmasutcliffe@gmail.com (M. Sutcliffe).

NDT&E International 51 (2012) 16–23

www.elsevier.com/locate/ndteint
www.elsevier.com/locate/ndteint
dx.doi.org/10.1016/j.ndteint.2012.06.005
dx.doi.org/10.1016/j.ndteint.2012.06.005
dx.doi.org/10.1016/j.ndteint.2012.06.005
mailto:dmasutcliffe@gmail.com
dx.doi.org/10.1016/j.ndteint.2012.06.005
dx.doi.org/10.1016/j.ndteint.2012.06.005


parallelisation over the Graphic Processing Unit (GPU) and pro-
vides experimental results based on real-world scenarios where
FMC can be used as a real-time inspection process.

2. FMC focusing algorithm

TWI have developed a software implementation of the core
focusing algorithm for use with FMC which is used to generate
cross-sectional imagery from the full matrix of Data. A technique
first introduced to the field of NDT by the University of Bristol in
2005 [2], the core of this algorithm is expressed mathematically
in Eq. (1), and defines a grid of pixels representative of the cross-
sectional area of inspection with pixel intensities (I) determined
from the time of flight calculation for each tx, rx pair. A Hilbert
transform (h) is used to convert the real time domain signal into
complex form. This is useful as taking the modulus of the complex
signal allows the signal magnitude (envelope) to be found

Iðx,zÞ ¼
X

htx,rx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxtx�xÞ2þz2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxrx�xÞ2þz2Þ

q

cl

0
@

1
A

������

������
ð1Þ

In other words, for every focal x,z point there will be n2 time of
flight calculations. This time of flight information is then used to
extract relevant amplitude information from the full matrix of
data using a delay and sum beam forming approach. Since every
pixel in the image acts as a focal point, fully focused imagery of
the region-of-interest can be obtained.

The Hilbert transform in signal processing is a mathematical
operator which acts on a real signal to return a complex signal.
The benefit of this in the context of image reconstruction is it
allows the signal magnitude to be determined as shown in Fig. 2.
Here it can be seen that if only the real signal is used to render an
image then indications from a single reflector may show up as
multiple responses due to the nature of the ultrasonic signal
(typically a five cycle Gaussian). This can hinder data interpreta-
tion and in the worst case scenario lead to false flaw character-
isation. Complex signals can be represented mathematically by
Eulers equation given in Eq. (2). It is straightforward to show that
this equation can be used to derive the well known sine and
cosine identities given in Eqs. (3) and (4). These identities show
that sine and cosine waves consist of both negative and positive
frequency components, and when positive and negative fre-
quency components of a cosine signal are added together accord-
ing to the identity in Eq. (2), the imaginary component cancels,
leaving a purely real signal

ej2pft ¼ cosð2pftÞþ j sinð2pftÞ ð2Þ

sinð2pftÞ ¼
ej2pft�e�j2pft

2j
ð3Þ

cosð2pftÞ ¼
ej2pft�e�j2pft

2
ð4Þ

It should be observed that performance of this algorithm is
directly proportional to the size of the full-matrix of data with
performance in the order of O(n4) excluding computational
requirements for the Hilbert transform. This poor performance
is attributed to the fact that for each x, z pixel location the
corresponding tx, rx data has to be evaluated. As this algorithm
performs the same mathematical operation on each x, z, tx, rx it is
an ideal candidate for optimisation through parallelisation under
the Single Instruction-Multiple Thread (SIMT) architecture.
Originally developed for the vector processors found in the super-
computers of the 1970s and 1980s [4], the SIMT architecture is
now commonly found in graphic processors. With the introduc-
tion of NVIDIA CUDA, allowing custom code to operate on and
exploit its hardware, supercomputing capability is now available
at a low cost [5].

3. CUDA

CUDA is a parallel programming model introduced in 2006 by
NVIDA to allow complex computational problems to operate over
its GPU architecture [6]. For years the computing gaming industry
has exploited the power of the GPU for 3D computer animation
and in response to this, the GPU has evolved to perform many
math operations simultaneously through a highly parallelised and
optimised architecture. Unlike CPU architecture the GPU is not
a general purpose processor, and has limited capability to perform
different tasks in parallel. Instead the GPU allows for the same
operation to be applied to a predefined data-set. This relationship
is explored in Fig. 3, where it is indicated that the CPU has evolved
for data access, caching and flow control while the GPU archi-
tecture has evolved to be dedicated to doing one task well—the
same problem executed in parallel.

This relationship is more clearly understood when examining a
typical function of the GPU. In the case of 3D computer animation
this data-set would be the vector information for objects within
the virtual world, while an operation may involve a rotation of all
objects along a specific axis. The implementation of this scenario
is achieved by performing the rotation operation on all vectors
within the data-set. Given that each vector is independent of all
other vectors this operation is highly suitable for parallelisation,
as no dependencies exist within the data-set. Conversely, the CPU
is capable of more advanced levels of parallelisation, where one
task maybe dedicated to the capture of data, while another
dedicated to refreshing the display, and another for post-proces-
sing, and through thread management dependencies may be
carefully controlled. However a limiting factor for parallelisation
over the CPU is the number of cores available to the software
application. While a typical CPU may have 4–8 cores, it is common
for an entry level GPU to have in excess of 96 cores.

Fig. 1. Transmitting and receiving with FMC.

M. Sutcliffe et al. / NDT&E International 51 (2012) 16–23 17



Download English Version:

https://daneshyari.com/en/article/295193

Download Persian Version:

https://daneshyari.com/article/295193

Daneshyari.com

https://daneshyari.com/en/article/295193
https://daneshyari.com/article/295193
https://daneshyari.com

