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a b s t r a c t

The dispersive phase velocity of a wave propagating through a system is an important parameter and

carries valuable information in non-destructive tests related to multi-layered systems such as a soil site.

The dispersive phase velocity of a wave can be estimated using the phase spectrum, which is easily

evaluated through the cross power spectrum. However, the phase spectrum as obtained using the cross

power spectrum is sensitive to background noise, which always exists in the field. This causes

difficulties in the determination of the dispersive phase velocities. In this paper, a new method to

evaluate the phase spectrum using the harmonic wavelet transform is proposed. The introduced

method can successfully remove background noise effects. To evaluate the validity of this method,

numerical simulations of multi-layered systems were performed. Phase spectra determined by the

suggested method were found to be in good agreement with the actual phase spectra under conditions

characterized by heavy background noise. This shows the potential of the proposed method.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Phase velocity of wave propagating through a system is an
important parameter and carries valuable information of a system
in a non-destructive test. For a multi-layered system such as soil
site, the surface wave has dispersive characteristics, implying that
the phase velocities vary with the frequency (or the wave length).
The frequency–phase velocity curve of a surface wave, which is
known as a dispersion curve, is directly related to the geometry
and material properties of a system. It is utilized to evaluate the
elastic properties and the layer thickness of the site non-
destructively [1,2]. To determine a dispersion curve, the phase
velocity of any frequency component of wave is determined using
the time delay between receivers, as follows:

Vðf Þ ¼ D=tðf Þ (1)

Here, D is the distance between two receivers and t(f) is the
time delay. The value of t(f) can be obtained for each frequency
using the phase difference between signals measured at the two
receivers, as follows:

tðf Þ ¼ fdiff ðf Þ=2pf (2)

In Eq. (2), fdiff(f) is the phase difference between two signals at
frequency f. Therefore, it is important to determine the correct
phase difference for the determination of the dispersion curve in

non-destructive site characterizations. The phase difference of
each frequency component of wave can be easily calculated using
the phase spectrum, which is the phase information of the cross
power spectrum via Fourier transform and represents the phase
difference between two signals as a function of the frequency [3].
In the field, noise exists continually, and the phase spectrum is
easily contaminated by noise owing to the characteristics of the
Fourier transform. Noise causes severe contamination of the phase
spectrum when the energy of wave is smaller compared to that of
the noise in the field. To improve the quality of the phase
spectrum under noisy conditions, a larger energy source, such as a
vibrosize, should be used. However, this makes the field test
somewhat impractical. In addition to the cross power spectrum
using the Fourier transform, the time-varying cross power spectra
using a time–frequency transform such as a harmonic wavelet can
be applied to determine the phase spectrum [4]. The phase
spectrum resulting from the use of the time-varying cross spectra
is identical to and has the same limitations under noisy conditions
as that resulting from the use of the cross power spectrum using
the Fourier transform.

Several signal process methods have been developed and
applied to remove noise effect [5–7]. These methods can easily
remove noise when noise frequency is different from signal
frequency. But if signal and noise cover a similar frequency range,
it is difficult to remove the noise using these methods. The noise
in the field, such as a soil site, is a random noise that generally
covers a wide frequency range, including wave signal frequency. In
the non-destructive test using a dispersion curve, it is necessary to
evaluate the phase spectrum over a wide frequency range [1,2].
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Therefore, a new method is needed to determine the reliable
phase spectrum even under severe random noise conditions
covering a wide frequency range, including signal frequency.

In this paper, a new method to evaluate the phase spectrum
under heavy random noise conditions is proposed. It uses the
harmonic wavelet transform as an alternative method to the use
of the current cross power spectrum method. The harmonic
wavelet transform is introduced. The principle of the method and
the proposed evaluation procedure of the phase spectrum are
described. Finally, numerical simulations of the multi-layered
systems are performed and the validity of the proposed method
is verified.

2. Harmonic wavelet transform

Wavelet analysis is a fundamental correlation method. The
wavelet coefficient, a(t), provides information concerning the
structure of the signal and the relationship between the signal and
the shape of the analyzing wavelet, w(t). The harmonic wavelet is
an orthogonal wavelet represented as follows in the frequency and
time domains [8]:

Wm;nðoÞ ¼
1

ðn�mÞ2p
for m2ppoon2p

¼ 0 elsewhere

wm;nðtÞ ¼
ejn2pt � ejm2pt

jðn�mÞ2pt
(3)

Here, n and m are real but not necessarily integers, and j ¼
ffiffiffiffiffiffiffi
�1
p

.
Each harmonic wavelet can be related to an ideal bandpass filter
as it has a constant real value inside the band of frequency while it
is zero elsewhere. In the time domain, the harmonic wavelet has a
localized harmonic characteristic.

According to the study of Park and Kim [9], the harmonic
wavelet coefficient am,n(t), which is defined by Wm,n(o), can be
represented as follows:

am;nðtÞ ¼ sf ðtÞ þ
j

p

Z 1
�1

sf ðt
0Þ

t � t0
dt0

¼ sf ðtÞ þ jH½sf ðtÞ� ¼ xðtÞejfm;nðtÞ (4)

Here, sf(t) is the output signal of an ideal bandpass filtering
operation in which the magnitude of the filter is 1/2|Wm,n(o)| and
its bandpass is m2ppoon2p. H represents the Hilbert transform,

xðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsf ðtÞÞ

2
þ ðH½sf ðtÞ�Þ

2
q

is the magnitude of am,n(t), and

fm,n(t) ¼ tan�1(H[sf(t)]/sf(t)) is the phase of am,n(t). From Eq. (4),
it is apparent that the real part of am,n(t) is the output signal of the
bandpass filtering operation and the imaginary part of am,n(t) is
the Hilbert transform of the real part of am,n(t); namely, am,n(t) is
the analytic signal corresponding to sf(t). The output signal of the
bandpass filtering operation, sf(t), is generally an amplitude-
modulated signal:

sf ðtÞ ¼ yðtÞ cos fðtÞ (5)

The analytic signal corresponding to sf(t) is obtained as follows:

am;nðtÞ ¼ sf ðtÞ þ jH½sf ðtÞ� ¼ yðtÞ cos fðtÞ þ jH½yðtÞ cos fðtÞ�
¼ yðtÞ cosf ðtÞ þ jyðtÞ sin fðtÞ

¼ yðtÞejfðtÞ (6)

Comparing Eqs. (4) and (6), the magnitude of am,n(t) is shown to
represent the envelope of sf(t) versus the time, and the phase
fm,n(t) represents an instantaneous phase of sf(t) versus the time.
Through harmonic wavelet transform, magnitude and phase angle
time–frequency maps are determined as shown in Fig. 1. These

time–frequency maps represent variation of magnitude and phase
angle of every frequency component with time.

3. Determination of the phase spectrum using the harmonic
wavelet transform

3.1. Principle of the method

The phase spectrum represents the phase difference between
two time domain signals as a function of frequency. The transient
wave signal generated by impact consists of various frequency
components, and each frequency component can be represented
by an amplitude-modulated signal in the time domain, as shown
in Fig. 2(a). A system between two measurement points can be
expressed as a bandpass filter. Assuming that the input signal of
the system is an amplitude-modulated signal as follows:

s1
f ðtÞ ¼ y1

f ðtÞ sin½f1
f ðtÞ� ¼ y1

f ðtÞ sin½2pft þ y1
� (7)

The output signal measured at measurement point 2 is
also an amplitude-modulated signal with the same frequency,
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Fig. 1. Harmonic wavelet time–frequency maps of an arbitrary transient wave

signal: (a) magnitude time–frequency map; (b) phase angle time–frequency map.
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