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a b s t r a c t

Magnetic flux leakage (MFL) technique is one of the oldest and most commonly used technique for

detecting corrosion in the pipe wall as well as pipeline features like welds, valves, supports,

attachments, etc. The MFL data obtained is processed for detecting (isolating) defect or feature signal

and characterizing it for the purpose of sizing or assigning a template. This paper discusses the

methodology adopted for analysis of radial MFL signal. The characterization of the defects is based on

primary and secondary parameters of the radial MFL signature. Primary parameters are axial and

circumferential spread and amplitude of the signature. In addition, secondary parameters like shape

and extent of the signature are also considered. Accuracy and confidence of sizing achieved by the

proposed scheme are validated by several dig site inspections of actual buried oil pipelines.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Corrosion and stresses causing catastrophic failures are major
problems for underground pipelines carrying petroleum products.
Although protected by other methods such as coating and
cathodic protection (CP), it is mandatory to do inline inspection
of the pipelines by Instrumented PIGs (IPIG) at regular intervals.
Preventive maintenance based on the in line inspection (ILI)
report avoids accidental loss of highly inflammable and costly
petroleum products. Instrumented pigs work based on either
magnetic flux leakage (MFL) or ultra-sonic (UT) principle. The
main advantage of MFL technology over UT is that the former
requires no coupling medium for sensing and hence can be used
for both liquid and gas pipelines. The characterization technique
proposed in this paper, however, is restricted neither to under-
ground pipeline nor to the nature of the product carried by the
pipelines. The structure of the rules used for characterization is as
such general in nature and is independent of the diameter and
thickness of pipelines, as long as the pipe wall is saturated to an
optimum level of magnetization. In both cases, a large volume of
data from an inspection run is needed to be analyzed in a short
time. Moreover, accurate detection and characterization of defects
for final assessment of pipeline health are extremely important.
The task can only be managed with very efficient automation,
reducing the time for offline assessment as well as maintaining
the reliability of the analysis [1]. This paper presents a complete

solution for characterizing the defects as well as pipe features
based on radial MFL data in a step by step approach.

The MFL tool comprises of permanent magnets to magnetize
the pipe wall and an array of hall-effect sensors mounted around
the circumference to measure the leakage flux density [2,3]. As
the instrument moves along the pipeline propelled by the product
flowing in the pipeline, the hall sensors sense the leakage flux
density continuously and the outputs are acquired, digitized and
stored in the on-board data acquisition system of the instrument.
Prior to storage, the data collected by IPIG is processed on-line by
thresholding its projections on a set of wavelet basis, to retain
useful information regarding pipe features and metal loss defects.
The compressed MFL data is de-compressed and de-noised offline
using discrete wavelet transform (DWT) to form an image of the
pipe surface. Pipe features and defects are detected from the pipe
image using image segmentation technique. Signal features are
extracted from the detected defect signature and are mapped onto
defect features. The three primary signal features detected are
axial extent of signal termed as span, circumferential spread of
signal in terms of number of sensors and maximum peak to peak
gauss level for a particular feature. In addition to these
parameters the secondary parameters like shape of the circum-
ferential flux pattern and its spread are also considered. These
parameters are then used in the classifier module to finally
predict the defect feature dimensions namely length, width and
depth. Use of secondary parameters in addition to primary for
characterization of defects from MFL signal has been reported in
[4]. However, the correlation of these parameters with defect size
is obtained by neural nets. An attempt has been made in the
present paper to correlate the secondary parameter to the nature
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of flux leakage such that a direct connection is visible with the
defect sizing. Although both axial and radial MFL signals are used
for defect characterization, not many references could be found in
public domain discussing the empirical rules exclusively for
spatially bipolar radial MFL signal. Although use of neural
network has been reported for classification of complex defects
[3–6], empirical rules prove to be a simple and useful solution of
the standard characterization problem. This paper discusses the
structure of empirical relationships used by the classifier module
for length, width and depth sizing of metal loss defects from the
radial MFL signal. For most of the naturally occurring corrosion
defects, the signal to noise ratio (SNR) of radial MFL signal is
higher than its axial counterpart. Moreover, the spatial interval
between negative and positive peak of the bipolar radial flux is a
direct and accurate indication of the length of the defect. The
structure of the formulae is derived from the first principle, but
the parameters in the empirical relationships have been esti-
mated from experiments with known defects. Solution of
parameter estimation problem given the structure is obtained
by minimizing error in sizing, based on a chosen criterion such as
that of least squares. The topic is not discussed in this paper to
limit the length of the paper. The empirical rules have been
validated by interpreting data from actual trials.

The paper demonstrates the results of feature and defect
analysis based on radial MFL signals that have been verified by dig
site inspections. The final aim of the analysis is to predict the safe
maximum operating pressure (MAOP) for the pipeline. The MAOP
is estimated as per standards (e.g. ASME B31 G) based on the
assessment of defect features.

Rest of the paper is structured as follows. Section 2 gives an
overview of MFL data processing including data de-noising and
feature extraction. Section 3 discusses the method of defect
characterization and sizing. Section 4 discusses the results
obtained by applying these techniques on data sets recorded
from actual runs in buried pipelines. Section 5 concludes the
paper indicating major achievements and discusses further scope
of work in this field.

2. An overview of data processing

Although MFL data is analyzed offline, on-line data processing
is necessary for reducing the size of the data. Handling and
storage of large volume of data from a run of several hundred
kilometers become cumbersome and costly. Usually a large
volume of MFL signal from a run does not contain any
information. Hence, we need to save only those parts of the
signal that contain information about pipe feature or metal loss
defects. This requires taking a decision, on-line, regarding
usefulness of the data. The same is achieved by checking for the
presence of information above a threshold in wavelet-decom-
posed signal.

The offline data processing involves locating pipe features and
defects, extraction of signal features at the defect locations,
characterization or sizing, classifying a defect as per standards
and reporting significant defects. Consistency check of signal
features in the report calls for compensation/correction of
features and rejection of spurious indications due to sensor
bounce, etc.

Characterization of metal loss defects involves accurate sizing
and profiling of the defects from MFL signals. The primary
parameters that significantly affect the distribution of leakage
flux density near a defect are percentage wall loss (%WL), length
(dimension of a defect along the direction of magnetization) and
width (dimension of a defect perpendicular to the direction of

magnetization). A more detailed discussion on the subject is
available in [2,4,7–9].

2.1. Pre-processing of raw data

In offline processing, the raw MFL data from a run is first
scanned for preliminary information on the quality, continuity,
environment (ambient temperature, vibration level, etc.) and
duration of data stored to ascertain the health of the run. It also
involves correcting signals with reference to calibration measure-
ments carried out for the sensors with the instrument prior to the
run. This calibration run involves normalizing sensor response
from the data collected on a full periphery groove of uniform
wall loss.

2.1.1. De-noising with undecimated discrete wavelet transforms

The undecimated DWT is a linear bounded operator W

consisting of J+1 linear operator

Wj : l2ðZÞ-l2ðZÞ, j¼ 1,2,. . .,Jþ1 ð1Þ

In wavelet literature j is referred to as scale, as an alternative to
frequency. One can compute DWT of the discrete signal x[n] with
a low-pass filter (h) and a high-pass filter (g). Filters h and g are
finite impulse response (FIR) filters. The resulting sequence of
discrete signals is called the undecimated DWT of the sequence
x[n]. The operators Wj, for undecimated dyadic DWT, are the
convolution operators. The reconstruction operator W�1, an
inverse of W, can also be implemented by non-sub-sampled
octave band filter banks.

The perfect reconstruction relationship for undecimated filter
bank is similar to that for decimated filter bank and FIR filter
coefficients, odd length and symmetric, derived for decimated
implementation can also be used in undecimated case, normal-
izing each coefficient by O2 [10]. This allows us to test signals
with the family of readily available, so-called bi-orthogonal spline
wavelets, in our work. The impulse responses of the filters used in
this work are either symmetric or anti-symmetric.

2.1.2. De-noising using soft thresholding of signal in wavelet domain

Optimum solution for de-noising by better approximation is
obtained by taking penalized least square approach [11]. The
original signal is first decomposed using DWT and then insignif-
icant coefficients at each scale are zeroed by the thresholding
operation. Soft thresholding reduces significant DWT coefficients
by the threshold amount and cuts off the coefficients lower than
the threshold. The idea is that the noise is present not only in a
particular band of frequency but also at all frequencies and it can
be removed by amplitude thresholding. Soft thresholding can be
described as

x½n,y� ¼ x½n��y if x½n�
�� ��4y

x½n,y� ¼ 0 if x½n�
�� ��ry

ð2Þ

Level of threshold h is chosen by estimating median absolute
deviation of DWT coefficients at the finest scale. It is assumed
that the finest scale mainly comprises of noise. Inverse DWT
recovers the desired de-noised signal. A strategy is formulated
to change the level of threshold at different scales. One can also
reject the DWT coefficients at some scales if all the coefficients at
those scales are considered to be noise and recombine only those
scales that have relevant data above threshold.

The signal could be de-noised further by using more compact
representation such as wavelet modulus maxima representation
(WMMR) or wavelet maximum curvature point representation
(WMCPR) [10,12]. It is possible to estimate signal features
from the multi-scale evolution of modulus maxima as the
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