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a b s t r a c t

Time reversal (TR) of ultrasonic bulk waves in fluids and isotropic solids has been used in many

applications including ultrasonic NDE. However, the study of the TR method for anisotropic materials is

not well established. In this paper, the full reconstruction of the input signal is investigated for

anisotropic media using an analytical formulation, called a modular Gaussian beam (MGB) model. The

time reversal operation of this model in the frequency domain is performed by taking the complex

conjugate of the Gaussian amplitude and phase received at the TR mirror position. A narrowband

reference signal having a particular frequency and number of cycles is then multiplied and the whole

signal is inverse Fourier transformed to obtain the time domain signal. The original input signal is seen

to be fully restored by the TR process of MGB model and this model can be more generalized to simulate

the spatial and temporal focusing effects due to TR process in anisotropic materials.

& 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The origin of the time reversal (TR) concept traces back to time
reversal acoustics [1–3]. In time reversal acoustics, an input bulk
wave can be exactly reconstructed at the source location if a
response signal measured at a distinct location is time-reversed
and reemitted to the original excitation location. This phenom-
enon is referred to as TR of bulk waves and has been used in many
applications including ultrasonic nondestructive evaluation and
underwater acoustics.

While the TR method for bulk waves in fluids and isotropic
solids has been well established [4,5], the study of the TR method
for anisotropic solids is relatively new. The spatial and temporal
focusing effect due to the time reversal mirror (TRM) in
anisotropic solid was first studied by Zhang et al. [6,7] by using
a ray method. The beam focusing effects will be different
depending on the wave propagation direction due to the
anisotropy dependence of the time reversal process of propagat-
ing waves. Thus, it is necessary to examine whether an original
input signal is fully restored at the source location before the
TR method is applied for anisotropic media.

In this paper, the full reconstruction of the input signal is
attempted through the TR process of ultrasonic bulk waves
in anisotropic solids. To achieve this goal, a modular Gaussian
beam (MGB) model is employed to simulate the TR process
of the longitudinal wave propagation in anisotropic solids. The

MGB model provides an efficient formulation for ultrasound
propagation, because its properties can be described in analytical
matrix form even after propagation through general anisotropic
media and after interactions with multiple curved interfaces. It is
shown that complete reconstruction of the original input signal
can be achieved by the TR process of MGB model.

2. MGB model for anisotropic solids

We describe a MGB approach for ultrasonic beam propagation
shown in Fig. 1, where a single Gaussian beam is radiated from a
circular source and travels in solid media composed of two
anisotropic solids and an interface. We assume the beam
propagation along symmetry directions of anisotropic solids and
a normal interface with respect to the beam path. Thus, the x1–x3

plane in Fig. 1 constitutes a symmetry plane and the x3-axis
represents one of the symmetry directions. For the geometry of
Fig. 1, a Gaussian velocity profile for either a P-, SV- or SH-wave is
present at the source and propagates as a Gaussian beam into the
solid 1. In Fig. 1, V1(0) and M1(0) are the known starting amplitude
and phase values in the Gaussian at the source location ðx̃3Þ.
The propagation distance x̃3 is measured along the central axis of
the Gaussian beam, x3. (x1,x2) are coordinates perpendicular to x3

with x1 in the plane of incidence and x2 normal to that plane.
The velocity amplitude and phase of a propagating Gaussian

beam in the solid can be completely described by solving the
paraxial wave equation (Huang, 2005). For the geometry of Fig. 1,
the particle velocity in the Gaussian beam at a distance x3 ¼ x̃3
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can be written as

vðx;oÞ ¼ V1ðx̃3Þ exp io x̃3

c1
þ

1

2
XTM1ðx̃3ÞX

� �� �
(1)

where X ¼ [x1,x2]T, o the angular frequency, and c1 is the phase
velocity of the particular wave type in the solid 1. It is noticed that
the velocity field in Eq. (1) is composed of three terms, i.e., the
Gaussian amplitude, the propagation term, and the Gaussian
phase. The amplitude V1ðx̃3Þ and phase M1ðx̃3Þ of a propagating
Gaussian beam can be obtained by solving the paraxial wave
equation as [8–10]

V1ðx̃3Þ ¼
V1ð0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det½AP
1 þ BP

1M1ð0Þ�
q (2)

M1ðx̃3Þ ¼ ½D
P
1M1ð0Þ þ CP

1�½B
P
1M1ð0Þ þ AP

1�
�1 (3)

where V1(0) and M1(0) are the known starting amplitude and
phase values in the Gaussian at the source location ðx̃3 ¼ 0Þ. V1(0)
and M1(0) can be related to the complex constants An and Bn of
Wen and Breazeale [11] through V1(0) ¼ v0An and M1(0) ¼ (2iBn/
oa2)I, where v0 is the uniform velocity on the transducer face,
a the radius of a circular transducer, and I the 2�2 identity
matrix. The propagation matrices (A1

p,B1
p,C1

p,D1
p) are given by

AP
1 ¼

1 0

0 1

" #
; BP

1 ¼ x̃3

ðc1 � 2C̃1Þ �D̃1

�D̃1 ðc1 � 2Ẽ1Þ

" #
,

CP
1 ¼

0 0

0 0

" #
; DP

1 ¼
1 0

0 1

" #
(4)

where the terms (C̃1; D̃1; Ẽ1) represent the slowness surface
curvatures of a particular wave type in the solid 1 (as measured

in the slowness coordinates (x1,x2,x3)). In the isotropic case,
C̃1 ¼ D̃1 ¼ Ẽ1 ¼ 0. These curvature terms can be obtained by
expanding the x3 component of the slowness vector, s3, to the
second order in the (x1,x2,x3) coordinates in the form [12,13]

s3 ¼
1

c1
þ

uI

c1
sI þ KIJsIsJ ðI; J ¼ 1;2Þ (5)

where (u1,u2) are the components of the group velocity vector
along the (x1,x2) axes, respectively, for a wave of type. For an
isotropic solid or for a wave propagation in a symmetry direction
u1 ¼ u2 ¼ 0. The matrix K in Eq. (5) is given by

K ¼ �
1

2

c1 � 2C̃1 �D̃1

�D̃1 c1 � 2Ẽ1

" #
(6)

For some simple type of anisotropic media the curvature terms
can be expressed in analytical form. In general, they must be
obtained numerically from the values of the slowness surfaces in
the neighborhood of the refracted ray.

When a particular incident Gaussian beam strikes the
interface, reflected and transmitted Gaussian beams are gener-
ated. We also assume that the y1–y3 plane in Fig. 1 constitutes
a symmetry plane and the y3-axis represents one of the
symmetry directions. For the beam propagation along the
symmetry direction within the symmetry plane of anisotropic
solids and a normal interface with respect to the beam path,
there is one transmitted wave of the same type as the incident
wave. In order to describe the transmitted wave in solid 2, we
employ the coordinates (y1,y2,y3), where ỹ3 is taken along the
beam axis y3.

When the propagated Gaussian beam strikes an interface,
reflected and transmitted Gaussian beams are generated. The
amplitude V2(0) and polarization vector d̄ of the particular wave
type transmitted in solid 2 at the interface ðỹ3 ¼ 0Þ in the paraxial
approximation can be found by solving for the problem of the
transmission of a plane wave at a planar interface. Thus, the
refraction angles of transmitted waves in solid 2 can be
determined by Snell’s law, and the amplitude V2(0) can be found
by multiplying the incident wave by the appropriate plane wave
transmission coefficient. Thus, we have

V2ð0Þ ¼ T12V1ðx̃3Þ (7)

where T12 is the plane wave transmission coefficient based on the
velocity for an incident wave and a transmitted wave. Obtaining
the phase at the interface, M2(0), is more complicated. It involves
matching the phases of the incident and transmitted waves at the
interface and approximating the interface surface to the second
order (if it is curved) near the point where the central ray of the
incident Gaussian strikes the interface.

M2ð0Þ ¼ ½D
t
12M1ðx̃3Þ þ Ct

12�½B
t
12M1ðx̃3Þ þ At

12�
�1 (8)

where the transmission matrices (A12
t ,B12

t ,C12
t ,D12

t ) are given by

At
12 ¼

1 0

0 1

� �
; Bt

12 ¼
0 0

0 0

� �
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0 0

0 0

� �
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12 ¼
1 0
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� �
(9)

Similar expressions can be obtained for the interface reflection
by modifying the transmission matrices, although not shown
here.

In solid 2, the propagation laws for a particular wave type
(Gaussian amplitude and phase, V2ðỹ3Þ and M2ðỹ3Þ), follow the
same law as in the solid 1.

V2ðỹ3Þ ¼
V2ð0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det½AP
2 þ BP

2M2ð0Þ�
q (10)

M2ðỹ3Þ ¼ ½D
p
2M2ð0Þ þ Cp

2�½B
p
2M2ð0Þ þ Ap

2�
�1 (11)
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Fig. 1. Propagation of a Gaussian beam in a symmetry direction of anisotropic

solid. Two anisotropic solids have a normal interface with respect to the beam

path.
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