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a b s t r a c t

Magnetic flux leakage technique is used for defect detection inside a magnetically permeable bar by

measuring the leakage fields outside the bar. Defects of varying sizes in a magnetically permeable bar

have been modelled as localized anti-dipoles with different moments. These defect locations and

moments have to be determined based on the measurement of the leakage fields in the presence of

random noise. Multiple Signal Classification (MUSIC) approach has been used to identify the defect

locations and the moments of these defects. After finding the location of the first dipole representing the

larger defect, using orthogonal projection of the measured magnetic field data away from the first defect

location, location of the next dipole is identified by MUSIC. This process is continued until all the defects

are exhausted. The leakage fields from three deeply buried defects were simulated by direct forward

calculation and the resulting data were utilized for inversion using this approach. It has been possible to

identify the number of defects and their locations by this approach even in the presence of reasonable

levels of additive noise.

& 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Magnetic flux leakage (MFL) method is widely used for non-
destructive evaluation of defects in oil and gas pipelines
manufactured from magnetic steels [1–3]. In MFL method, a
static uniform magnetic field is applied to the magnetically
permeable wall of the pipeline. Flaws in the pipe wall generate
magnetic field perturbations which manifest as leakage fields
outside the pipe. The technique involves the measurement of this
leakage field profile and its offline evaluation to infer the locations
of the defects and their size. A detailed description of defect
modelling has been presented elsewhere [4,5]. Our objective is to
determine the number of defects, their locations and the strengths
of the dipoles that represent the defects from simulated leakage
field measurements performed above the surface of the magne-
tically permeable structure. It has been possible to find a best
estimate for the source using the generalized inverse or
Moore–Penrose inverse approach [5,6], where the chosen solution
minimizes the sum of the squared differences between the
measured magnetic field and the field generated by the estimated
source distribution provided the number of defects is known
apriori. The Multiple Signal Classification (MUSIC) approach [6]
has been utilized for identifying the dipole locations in magne-

toencephalography (MEG) where the magnetic field is measured
as a function of both space and time. The measured magnetic field
bz(x, y, z, t) is then a matrix with the number of columns greater
than the number of dipoles making an assessment of number of
dipoles possible by singular value decomposition (SVD). In MFL
the magnetic field is measured only in terms of space variables
and hence forms a single column vector. In view of this it is
difficult to infer the number of dipoles involved in the problem by
SVD. If the defects are well separated and the number of defects is
unknown, we demonstrate that this inverse problem could still be
handled to identify all the defect locations by MUSIC approach
coupled with an orthogonal projection of the measured field data.
After getting an estimate of the number of dipoles and their
approximate locations, pseudo-inverse calculations are performed
to get an improved estimate of the dipole locations and their
strength.

2. Defect-induced magnetic leakage fields

The MFL due to a defect in a magnetically permeable material
can be modelled as arising due to a dipole positioned at the defect
site if the defect is a small cavity with a closed surface. The
background magnetic flux density due to the magnetization of the
sample does not contribute to the magnetic anomaly associated
with the defect during scanning and is therefore ignored. The
normal component of magnetic flux density bz(x, y, z) for a dipole
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of strength mx located at (x0, y0, z0) and oriented towards the
negative X-direction is given by [4,5]

bzðx; y; zÞ ¼
�3m0ðx� x0Þðz� z0Þ

4p½ðx� x0Þ
2
þ ðy� y0Þ

2
þ ðz� z0Þ

2
�5=2

mx (1)

where m0 is the magnetic permeability of free space. An external
magnetic field is applied in the positive X-direction to magnetize
the bar and the defects are now modelled as dipoles with their
magnetic dipole moments aligned along the negative X-direction.
The Z component of the magnetic flux density bz is sampled at a
grid of points in the plane parallel to and above the top surface of
the bar under investigation. The sampled magnetic field bz(x, y, z)
can be written as a product of a nonlinear function of space
variables M(x, y, z, x0, y0, z0) called lead matrix and the magnetic
dipole intensity vector Q corresponding to the defect dipoles:

bz ¼MQ (2)

where bz is a m�1 column vector corresponding to magnetic flux
density at m different measurement locations, M is a m� q matrix
where the different columns of the lead matrix M correspond to
each of the assumed q dipoles and Q is a column vector of size
q�1 corresponding to dipole moments of the q dipoles. In general
the measurement locations m will be much larger than the
number of dipoles q to be determined. To include noise, which is
inevitably present in any experimental measurement, we write

bzn ¼MQ þ N (3)

assuming an additive noise N. If the locations of the q defects and
the strengths of the dipoles representing them are known apriori,
the magnetic field due to all these defects can be calculated using
the Eq. (3).

3. Generalized inverse procedure for identifying the location
of defects

In actual measurements, bz is measured at m locations whose
coordinates are known; from these measurements, the locations
and strengths of the dipoles have to be inferred. In general there is
no unique solution to the above problem. However, it is possible
to find an approximate solution which minimizes the least square
error between the measured magnetic field and the field due to
this approximate solution:

ek k ¼ bzn �MQ
�
�

�
�

F
(4)

where ||?||F represents the sum of the squares of the elements of
the matrix, also referred to as the Frobenius norm [8]. The
magnetic field due to the flux leakage as measured in an
experiment which includes noise is then represented by the
following equation:

bzn ffiM 0Q0 (5)

where M0 and Q0 are approximate solutions obtained by
minimizing ||e||.

The Moore–Penrose inverse M 0�1
p provides us with the best

estimate Q0 in the presence of noise [8]. Q0 can be expressed in
terms of bzn as follows:

Q0 ¼M 0�1
p bzn (6)

Inserting the relation (6) into Eq. (4) for minimizing the residual
error we get

ek k ¼ bzn �M 0M 0�1
p bzn

�
�
�

�
�
�

F
(7)

The minimum norm solution of Eq. (7) also satisfies the Eq. (4)
and hence the unknown position parameters in the lead matrix M0

can be obtained directly by minimizing ||e|| [5]. If the number of

defects and their locations are known apriori, then M0 can be
constructed. Eq. (7) is a nonlinear minimization equation and can
be minimized using a non-gradient based method such as
Nelder–Mead simplex routine to get the unknown parameters
contained in M0, i.e. locations of the dipoles. Once the locations of
the dipoles are obtained, the strengths of these dipoles Q0 can be
deduced by using Eq. (6).

4. Defect identification by MUSIC

If the measurement is carried out for different field strengths
as well as measurement locations, Q is a matrix of size q� r where
q is the number of dipoles and r is the number of sets of
measurements, each set corresponding to a particular value of
field strength (r4q is assumed). In this case, bzn will be matrix of
size m� r. Eq. (7) can be rewritten as follows:

ek k ¼ ðI �M 0M 0�1
p Þbzn

�
�
�

�
�
�

F
(8)

ek k ¼ P?Mbzn

�
�

�
�

F
(9)

where P?M is the orthogonal projector of M0 [8].
If bzn is factorized into ½U S VT � by SVD [8] then P?M can be

approximated by Um�qUT
m�q [6] where Um–q is the matrix

comprising of the remaining m–q columns of the decomposed
matrix U representing the noise subspace. To find the dipole
locations by MUSIC approach [6], Gi, the single dipole lead vector
is factorized into ½Ui SI VT

i � and the q column vectors of Ui at
the left are represented as Uiq and constitute the signal subspace.
In MUSIC approach the correlation between this signal subspace
and noise subspace is minimized. The cost function Jls [6] is the
minimum of the eigen values of the product of signal subspace
and noise subspace given by

Jls ¼ lminðU
T
iqUm�qUT

m�qU iqÞ (10)

The cost function Jls when evaluated at dipole locations will yield
near zero values for low noise data, whereas at all other locations
the cost function will be nearly unity. To identify the positions of
the dipoles in the presence of noise, the minimum eigenvalue cost
function is evaluated in the region of interest (x, y, z coordinates)
and the inverse of this cost function is plotted. Peaks in this graph
indicate the positions of dipoles [6].

MFL measurements are in general carried out for only one field
strength (r ¼ 1) and hence the bzn is a single column vector. This
implies that roq and the single column vector Ui represents all
the dipoles. However, It is still possible to infer the positions of all
the dipoles provided one of the dipoles is dominant and the dipole
locations are not very close. Then eigenvalue minimization of the
above matrix Eq. (10) identifies the location of this dominant
dipole. A better estimate of the dipole position is obtained by the
generalized inverse procedure [5] for single dipole using the
measured bzn. Having identified the location of the dominant
dipole, the data bzn is then orthogonally projected away [7] from
this dipole by using

bzn?1 ¼ ðP
?
G1
Þbzn (11)

where

P?G1
¼ I � ðG1ðG

T
1G1Þ

�1GT
1Þ (12)

is the orthogonal projection operator [8] of the dipole lead vector
G1 corresponding to the first dipole. After projecting the measured
magnetic field data away from the first dipole, the resultant bzn?1

will have contributions predominantly due to the next most
intense dipole. Repeating the search with MUSIC algorithm with
the new bzn?1 will yield the location of the second dipole. A better

ARTICLE IN PRESS

R. Baskaran, M.P. Janawadkar / NDT&E International 41 (2008) 416–419 417



Download English Version:

https://daneshyari.com/en/article/295780

Download Persian Version:

https://daneshyari.com/article/295780

Daneshyari.com

https://daneshyari.com/en/article/295780
https://daneshyari.com/article/295780
https://daneshyari.com

