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• Several  global  sensitivity  analysis  methods  are  compared.
• The  methods’  applicability  to nuclear  fuel performance  simulations  is  assessed.
• The  implications  of  large  input  uncertainties  and  complex  models  are  discussed.
• Alternative  strategies  to  perform  sensitivity  analyses  are  proposed.
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a  b  s  t  r  a  c  t

Fuel  performance  codes  have  two  characteristics  that  make  their  sensitivity  analysis  challenging:  large
uncertainties  in  input  parameters  and  complex,  non-linear  and non-additive  structure  of  the  models.  The
complex  structure  of the code  leads  to  interactions  between  inputs  that  show  as cross  terms  in  the  sen-
sitivity  analysis.  Due  to the  large  uncertainties  of the  inputs  these  interactions  are  significant,  sometimes
even  dominating  the  sensitivity  analysis.  For  the same  reason,  standard  linearization  techniques  do  not
usually  perform  well  in the analysis  of fuel  performance  codes.  More  sophisticated  methods  are  typically
needed  in  the  analysis.  To  this  end,  we  compare  the  performance  of several  sensitivity  analysis  methods
in the  analysis  of  a steady  state  FRAPCON  simulation.  The  comparison  of  importance  rankings  obtained
with  the  various  methods  shows  that even  the  simplest  methods  can  be sufficient  for  the  analysis  of fuel
maximum  temperature.  However,  the  analysis  of the gap  conductance  requires  more  powerful  methods
that  take  into  account  the interactions  of the inputs.  In some  cases,  moment-independent  methods  are
needed.  We also  investigate  the computational  cost  of  the  various  methods  and  present  recommendations
as  to which  methods  to  use  in  the analysis.

© 2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Light water reactor fuel performance codes model the behav-
ior of the fuel rod under irradiation, either in the steady state or
in transient conditions. The purpose of the modeling is to provide
understanding about how the thermal, mechanical and materials
properties interact and how the rod responds as a whole to the
boundary conditions imposed by the environment. An important
aspect of the analyses is to support the rod design and safe oper-
ation, so that the rod cladding remains intact and various safety
margins are respected. In addition to the usual difficulty of rep-
resenting a complex system with soluble mathematical models,
there are also large uncertainties in many of the system and model
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parameters. Therefore sensitivity analyses are often coupled with
uncertainty analyses, which take into account the uncertainties in
the code input, and produce an estimate of the uncertainty of the
calculated result. To take the analysis one step further, one may
ask how to reduce the uncertainty of the results, or which of the
code inputs is responsible for the uncertainty of the result. These
questions can be addressed by sensitivity analysis.

The goal of a sensitivity analysis is to find the most influential
input parameter to the computed model output. The method cho-
sen for the sensitivity analysis depends on the computational cost of
the model, the number of inputs to be considered, and the specific
question to be answered by the analysis. Although adjoint-based
methods have been implemented into fuel performance codes in
the past (Christensen et al., 1981; Wilderman and Was, 1984), the
more generic, sampling-based methods are typically used nowa-
days. Of these, computationally the most inexpensive method
is the one-at-a-time (OAT) method, where each parameter is
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varied independently while keeping the others fixed (Geelhood
et al., 2009; Sagrado and Herranz, 2013). Although often used due to
its simplicity, the method suffers from poor coverage of the param-
eter space and from lack of control over the quality of the analysis
(Saltelli et al., 2010). For a typical fuel performance code, such as
FRAPCON (Geelhood et al., 2011a,b), the computational time per
run is of the order of seconds or minutes. Therefore using Monte
Carlo based sensitivity analysis methods is entirely feasible. They
have been adopted in many studies to perform global sensitivity
analyses (Glaeser, 2008; Boulore et al., 2012; Ikonen and Tulkki,
2014; Pastore et al., 2015). Global sensitivity analysis methods have
the advantage of exploring the whole parameter space (hence the
term global), and in general can be used to identify properties of
very complex models. It should be mentioned that in addition to
Monte Carlo based evaluation, global sensitivity analysis can also
be performed with computationally more lenient methods (Sudret,
2008).

In this work, we study the practical aspects of using some
of the most common global Monte Carlo based sensitivity anal-
ysis methods. We apply variance based methods, including the
Pearson correlation analysis (Draper and Smith, 1998), and the
Sobol’ variance decomposition (Sobol’, 1993). These methods are
based on estimating the influence of a given input on the out-
put variance. A closely related method is the elementary effects
method (Morris, 1991), which is the global extension of the OAT
method. In certain cases it is possible that the variance or other
moments of the probability distribution is not a good measure
of uncertainty. Then, moment-independent methods can be used.
In this work, we employ the density-based Borgonovo ı measure
(Borgonovo, 2007), for which an efficient estimation method was
recently introduced by Plischke et al. (2013).

Another consideration when choosing the method is the specific
question posed to the analysis. Questions such as “If we could elim-
inate the uncertainty of one input parameter, which one should we
choose in order to reduce the variance of the output as much as pos-
sible?” and “Which of the input parameters are so non-influential
that they can be fixed?” define the setting of the sensitivity anal-
ysis (Saltelli and Saisana, 2007; Saltelli et al., 2008). The first one
corresponds to factor prioritization (FP) and the second one to fac-
tor fixing (FF) setting. In the FP setting, a good starting point is
to determine the main (first order) effect of an input parameter.
Higher-order analysis is needed in models with dominating inter-
action terms (uncertainties in the output that only arise as a result
of changing more than one variable simultaneously). Also in the
FF setting one has to consider the interactions between different
inputs. These can be quantified, for example, by the total effect
sensitivity index Ti, the elementary effects method, or in part by
the Borgonovo ı measure, discussed in Section 2.

For a fuel performance code, the role of interactions in the
model can be significant (Ikonen and Tulkki, 2014). This is because
of two characteristics of fuel performance codes: large uncertain-
ties in input parameters and complex, non-linear and non-additive
structure of the models. A famous example of the latter is the
gap conductance, which couples together the thermal, mechan-
ical and microstructural (e.g., fission gas release) models in the
fuel performance code. The intertwined structure of the code leads
to interactions between inputs that show as cross terms in the
sensitivity analysis. Due to the large uncertainties of the inputs
these interactions are significant, sometimes even dominating the
sensitivity analysis. For the same reason, standard linearization
techniques do not usually perform well in the analysis of fuel per-
formance codes.

A thorough sensitivity analysis of a fuel performance code
requires methods that can cope with the large uncertainties and
interactions. On the other hand, the simplicity and computational
ease of the OAT method is very appealing. In this work, we  attempt

to address the choice between different methods by comparing
their performance in the sensitivity analysis of a steady state sce-
nario modeled with the FRAPCON-3.4 code. In our analysis we
focus on the maximum fuel temperature and the gap conductance
computed for a mid-burnup (22 MWd/kgU) PWR  rod. The latter
is particularly challenging to analyze and showcases the potential
caveats of the simple methods. We  also briefly study the conver-
gence and required computational effort of the methods.

2. Analysis methods

2.1. One-at-a-time (OAT) analysis

Arguably the simplest sensitivity analysis strategy is to vary
one model input parameter at a time while keeping the others
fixed. Typically such a one-at-a-time (OAT) sampling is done around
the nominal (most probable, or best estimate) values of the input
parameters. It is possible to choose the sampling points in many
ways, but one of the most common ones is to choose the extreme
values of the distribution (Sagrado and Herranz, 2013). Another
typical way  would be to evaluate the effect of infinitesimal changes
to the inputs by choosing a very small deviation from the nomi-
nal value. However, in the case of a fuel performance code, where
we do not expect the model to linearize effectively and where
the uncertainties are large, we choose to sample the parameters
at their extreme values. One could of course increase the number
of points to sample intermediate values of the parameter (Pastore
et al., 2015). While this increases the likelihood of catching non-
monotonic effects of the input parameters, it also quickly increases
the number of required function evaluations, and is unlikely to
cover the parameter space efficiently (Saltelli and Annoni, 2010).

The change in the model output is evaluated at all the sampled
points, and the input causing the largest change in the output is
given the highest rank in the sensitivity analysis. In this work, we
define the OAT sensitivity measure for input Xi as

OATi =
max�i

|f (X + �i) − f (X)|∑
i(max�i

|f (X + �i) − f (X)|) , (1)

where X is the vector of the nominal values of the inputs, and �i is
a vector of zeros, except for its ith element �(i)

i
, which is chosen so

that Xi + �(i)
i

gives the extrema of the distribution of Xi. The max-
imum is taken over these two extrema. The function f represents
one of the outputs of the computer code. The denominator serves
to normalize the measure so that it can be easily compared to the
global sensitivity measures discussed below, which are normalized
between 0 and 1 by construction. The normalization has no effect
on the parameter ranking.

The computational cost of the method is very small, as the num-
ber of required simulation runs is only 2k + 1, where k is the number
of inputs.

2.2. Global sensitivity analysis

The goal of global sensitivity analysis is to characterize the
dependence of the model output on its inputs in the whole input
parameter space. Usually the analysis involves some kind of Monte
Carlo sampling of the inputs, either by pseudo random sampling
or by quasi random sampling. In quasi random sampling, the sam-
ple points are chosen in a way  that avoids clusters and results in
more effective sampling and faster convergence. In this work, the
Sobol’ quasi random sequence (Sobol’, 1967) is used to generate the
sample points. The variables Ui generated by the Sobol’ sequence
uniformly partition the unit interval (0, 1). The inverse cumula-
tive distribution function (ICDF) method is used to map  them to
the actual input variables Xi according to Xi = P−1

i
(Ui), where Pi



Download English Version:

https://daneshyari.com/en/article/296054

Download Persian Version:

https://daneshyari.com/article/296054

Daneshyari.com

https://daneshyari.com/en/article/296054
https://daneshyari.com/article/296054
https://daneshyari.com

