Contents lists available at ScienceDirect



Journal of Photochemistry and Photobiology B: Biology

journal homepage: www.elsevier.com/locate/jphotobiol

# Short Review Enzymatic function of cytochrome $b_{559}$ in photosystem II

# Pavel Pospíšil\*

Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic

#### ARTICLE INFO

Article history: Available online 16 February 2011

*Keywords:* Cytochrome b<sub>559</sub> Photosystem II Redox potential Superoxide anion radical

# ABSTRACT

Cytochrome  $b_{559}$  (cyt  $b_{559}$ ) is a heme-bridged protein heterodimer in photosystem II (PSII) of all oxygenic photosynthetic organisms. In spite of the fact that cyt  $b_{559}$  is strictly required for proper function of PSII, it is not involved in the linear electron transport chain from water to plastoquinone. Instead of that the participation of cyt  $b_{559}$  in the cyclic electron transport around PSII has been proposed mainly based on the ability of the heme iron to accept and donate an electron form the electron acceptor and to the electron donor side of PSII, respectively. In addition to the involvement of cyt  $b_{559}$  in the cyclic electron transport around PSII has been proposed mainly based on the ability of oxygenic photosynthetic organisms to oxidize water and reduce plastoquinone is connected to the formation of reactive oxygen species (ROS) and thus required to develop an effective antioxidant defense system against ROS. The review attempts to summarize a recent progress on the role of cyt  $b_{559}$  as oxygen on the characterization of redux, redox potential and acid-base properties of the heme iron in the putative enzymatic cycles. The possible oxidase and reductase enzymatic activity of cyt  $b_{559}$  in protection from photoinhibition is discussed.

© 2011 Elsevier B.V. All rights reserved.

Photochemistry Photobiology

#### Contents

| 1. | Introduction                                                 | 341 |
|----|--------------------------------------------------------------|-----|
|    | 1.1. Structure of cyt <i>b</i> <sub>559</sub>                | 341 |
|    | 1.2. Redox potential properties of cyt b <sub>559</sub>      | 342 |
|    | 1.3. Redox properties of cyt <i>b</i> <sub>559</sub>         | 342 |
|    | 1.4. Acid-base properties of cyt <i>b</i> <sub>559</sub>     | 342 |
|    | 1.5. Function of cyt <i>b</i> <sub>559</sub>                 | 342 |
| 2. | Oxygen reductase activity of cyt $b_{559}$                   | 343 |
| 3. | Superoxide reductase activity of cyt <i>b</i> <sub>559</sub> | 344 |
| 4. | Superoxide oxidase activity of cyt b <sub>559</sub>          | 344 |
| 5. | Plastoquinol oxidase activity of cyt $b_{559}$               | 345 |
| 6. | Physiological relevance                                      | 346 |
| 7. | Abbreviations                                                | 346 |
|    | Acknowledgments                                              | 346 |
|    | References                                                   | 346 |

# 1. Introduction

# 1.1. Structure of cyt b<sub>559</sub>

Cytochrome  $b_{559}$  (cyt  $b_{559}$ ) is an intrinsic component of photosystem II (PSII) in all oxygenic photosynthetic organisms such are cyanobacteria, algae and plants [1–3]. It is heme-bridged heterodimer composed of  $\alpha$ - and  $\beta$ -subunits, which are encoded by the psbE and psbF genes, respectively. The  $\alpha$ - and  $\beta$ -subunits consist

\* Tel.: +420 58 5634174; fax: +420 58 5225737. *E-mail address:* pospip@prfnw.upol.cz

1011-1344/\$ - see front matter  $\circledast$  2011 Elsevier B.V. All rights reserved. doi:10.1016/j.jphotobiol.2011.02.013

of the membrane-spanning  $\alpha$ -helix with the amino terminal end oriented to the stroma and the carboxyl end located in the lumen of thylakoid membrane [4,5]. Two histidine residues of the  $\alpha$ - and  $\beta$ -subunits are coordinated to the heme iron as the fifth and sixth axial ligands [6,7]. Polypeptide sequence analysis in various types of prokaryotic and eukaryotic organisms showed that histidine position varies with the organisms [2].

The three-dimensional crystal structure of PSII from thermophilic cyanobacteria *Thermosynechococcus elongatus* and *Thermosynechococcus vulcanus* showed that the heme is located on the stromal side of the thylakoid membrane and oriented perpendicular to the membrane plane [8–12]. The heme is distanced at about 50 Å from the  $Q_A$  site, 25 Å from the  $Q_B$  site, 50 Å and 25 Å from pheophytins of D1 (Pheo<sub>D1</sub>) and D2 (Pheo<sub>D1</sub>) proteins, respectively (edge-to-edge distance) [10,11].

### 1.2. Redox potential properties of cyt b<sub>559</sub>

The most important property of cyt  $b_{559}$  is its unique variable midpoint redox potential [3,13,14]. In comparison to other *b*-type of cytochromes, which have the midpoint redox potential close to 0 mV, cyt  $b_{559}$  covers more broad range of the redox potentials. The high-potential (HP) form of cyt  $b_{559}$  exhibits the midpoint redox potential in the range from +310 to +400 mV (pH 7), whereas the intermediate-potential (IP) and low-potential (LP) forms range from +125 to +240 mV (pH 7) and -40 to +80 mV (pH 7), respectively [13,15–20].

Several hypotheses have been proposed to explore the existence and significance of various forms of cyt  $b_{559}$  in PSII: (1) orientation of the two histidine imidazole rings [6], (2) different hydrophobicity of the heme environment [18,21,22], (3) variation in the nature of the heme coordination [16], (4) protonation state of the imidazole group of histidine [17,23,24], (5) the presence of molecular oxygen around the heme iron [25–27] and (6) the binding of plastoquinone at the  $Q_c$  site [28].

It has been proposed that the protein environment around the heme iron in the HP form of cyt  $b_{559}$  is more hydrophobic compared to the IP and LP form of cyt  $b_{559}$  [21]. Three-dimensional crystal structure provided the evidence that hydrophobic environment around the heme of cyt  $b_{559}$  is maintained by the fatty acids of sulfoquinovosyl-diacylglycerol (SQDG4), monogalactosyl-diacylglycerol (MDGD7) and the isoprenoid chain of plastoquinone in the PQ-PQH<sub>2</sub> exchange cavity [12]. In agreement with these considerations, it has been suggested that the binding of plastoquinone at the  $Q_c$  site enhances the hydrophobicity around the heme iron and stabilizes HP form of cyt  $b_{559}$  [28].

#### 1.3. Redox properties of cyt b<sub>559</sub>

The heme iron of cyt  $b_{559}$  exists in the both reduced and oxidized forms [1–3]. In the freshly prepared sample, the heme iron of HP form of cyt  $b_{559}$  is mainly in the reduced state, whereas the heme iron of LP form of cyt  $b_{559}$  is solely in the oxidized state [16,17,23,29]. However, the storage of the sample brings about oxidation of the ferrous heme iron in HP form of cyt  $b_{559}$ . It is proposed that the heme iron in HP form of cyt  $b_{559}$  temporarily remains in the reduced state mainly because of the fact that ferrous heme iron is unable to be autooxidized by molecular oxygen. As the midpoint redox potential of HP form of cyt  $b_{559}$  is in the range from +310 to +400 mV (pH 7), the ferrous heme iron of HP form of cyt  $b_{559}$  has no power to reduce molecular oxygen  $(E_{\rm m}(O_2/O_2^{-}) = -160 \text{ mV}, \text{ pH 7})$ . The ability of the heme iron of HP form of cyt  $b_{559}$  remains temporarily in the reduced state provides a capability to the ferrous heme iron to donate an electron to the PSII electron donor side. By contrast, the unstability of ferrous heme iron of LP form of cyt  $b_{559}$  is caused by the autooxidation of ferrous heme iron by molecular oxygen. As the midpoint redox potential of LP form of cyt  $b_{559}$  is in the range from -40 to +80 mV (pH 7), the ferrous heme iron of LP form of cyt  $b_{559}$  is easily oxidized by molecular oxygen to ferric heme iron. The ferric heme iron of LP form of cyt  $b_{559}$  has a capability to accept an electron from the PSII electron acceptor side.

#### 1.4. Acid-base properties of cyt b<sub>559</sub>

It has been demonstrated that the redox potential properties of cyt  $b_{559}$  are controlled by the formation of hydrogen bond between

the imidazole group of histidine and the polypeptide backbone [24]. More recently, the protonation of amino acid and formation of the hydrogen bond between the imidazole group of histidine and carbonyl group of  $\alpha$ -subunit were demonstrated as an essential requirement for attaining HP form of cyt  $b_{559}$  [17,30,31]. It has been shown that the relative content of HP form of cyt  $b_{559}$  decreased, when pH is above 7 [17]. It has been concluded that HP form of cyt  $b_{559}$  is converted to LP form of cyt  $b_{559}$  due to the deprotonation of nitrogen atom of the imidazole group of histidine in HP form of cyt  $b_{559}$ . Based on these considerations, the authors proposed that the heme has a single ionizing group that affects the midpoint redox potential of cyt  $b_{559}$  with a higher affinity for protons in the reduced form and a lower affinity in the oxidized form [17]. The authors assumed that nitrogen atom of the imidazole group of histidine in the HP form of cyt  $b_{559}$  is in the protonated state with hydrogen bond between the imidazole group of histidine and the  $\alpha$ -subunit, whereas in the IP form of cyt  $b_{559}$  it is in the protonated state with no hydrogen bond between the imidazole group of histidine and the  $\alpha$ -subunit. In the LP form of cyt  $b_{559}$ , the nitrogen atom of the imidazole group of histidine has been proposed to be in the unprotonated state [17].

#### 1.5. Function of cyt b<sub>559</sub>

Even though the function of cyt  $b_{559}$  has been deeply studied during the last three decades, the exact function of this heme protein is still unclear. The unique presence of cyt  $b_{559}$  in all oxygenic photosynthetic organisms (cyanobacteria, algae and plants) is the main structural difference, when compared to anoxygenic photosynthetic organisms (purple bacteria). The presence of cyt  $b_{559}$  in oxygenic photosynthetic organisms suggests that molecular oxygen has some role in cyt  $b_{559}$  function.

As a plausible explanation for the role of molecular oxygen in cyt  $b_{559}$  function is involvement of cyt  $b_{559}$  in the splitting of water to molecular oxygen. The role of cyt  $b_{559}$  in the stabilization of water-splitting manganese complex during the photoactivation has been described [32–34]. However, the participation of cyt  $b_{559}$  in the splitting of water to molecular oxygen seems to be unlikely due to the fact the heme iron is localized at about 50–60 Å from the water-splitting manganese complex (edge-to-edge distance) [10,11]. An alternative hypothesis proposed that cyt  $b_{559}$  serves as an intra-membrane oxygen transporter [35]. The hypothesis is based on the replacement of the histidine ligand by molecular oxygen under high concentration of molecular oxygen formed by PSII.

Cytochrome  $b_{559}$  has been demonstrated to play an essential role in the early steps of assembly of the PSII complex [36–42]. The authors proposed that cyt  $b_{559}$  acts as a redox-controlled nucleation factor that determines the level of PSII within the thy-lakoid membrane.

The largest focus has been given on the involvement of cyt  $b_{559}$  in the cyclic electron transport around PSII as a protective mechanism during the process of photoinhibition [2,3,43]. Barber and De Las Rivas [44] have proposed a dual model, which describes the mechanism of interconversion between LP and HP form of cyt  $b_{559}$  during the acceptor- and donor-side photoinhibition of PSII. The ferric heme iron of LP form of cyt  $b_{559}$  was proposed to prevent the over reduction of PSII electron acceptor side by acceptance of an electron from the primary electron acceptor pheophytin (Pheo) [44–46]. Buser et al. [47] demonstrated that plastoquinol, which occupies the  $Q_B$  site, reduces ferric heme iron of HP form of cyt  $b_{559}$ . The ferrous heme iron of HP form of cyt  $b_{559}$  was suggested to prevent PSII against donorside photoinhibition by an electron donation to highly oxidizing P680<sup>+</sup> via sequential or branched pathway with  $\beta$ -carotene and chlorophyll z as an intermediate electron carriers [47–52].

Besides the participation of cyt  $b_{559}$  in the cyclic electron transport around PSII, the evidence has been afforded on the enzymatic

Download English Version:

# https://daneshyari.com/en/article/29641

Download Persian Version:

https://daneshyari.com/article/29641

Daneshyari.com