Effect of fatty and lean fish intake on lipoprotein subclasses in subjects with coronary heart disease: A controlled trial

Arja T. Erkkilä, PhD*, Ursula S. Schwab, PhD, Seppo Lehto, MD, PhD, Vanessa D. de Mello, PhD, Antti J. Kangas, MSc, Pasi Soininen, PhD, Mika Ala-Korpela, PhD, Matti I. J. Uusitupa, MD, PhD

Institute of Public Health and Clinical Nutrition, Kuopio Campus, University of Eastern Finland, Kuopio, Finland (Drs Erkkilä, Schwab, de Mello, and Uusitupa); Institute of Clinical Medicine, Kuopio University Hospital, Kuopio, Finland (Drs Schwab and Lehto); Computational Medicine, Institute of Health Sciences, University of Oulu, Oulu, Finland (Mr Kangas and Dr Ala-Korpela); NMR Metabolomics Laboratory, School of Pharmacy, Kuopio Campus, University of Eastern Finland, Kuopio, Finland (Drs Soininen and Ala-Korpela); Computational Medicine, School of Social and Community Medicine, University of Bristol, Bristol, UK (Dr Ala-Korpela); Oulu University Hospital, Oulu, Finland (Dr Ala-Korpela); and Research Unit, Kuopio University Hospital, Kuopio, Finland (Dr Uusitupa)

KEYWORDS:

Lipoprotein subclasses; Fish; n-3 Fatty acids; Coronary heart disease **BACKGROUND:** Fish oil intake reduces serum triglycerides; however, little is known about the effects of dietary fish intake on lipoprotein subclasses.

OBJECTIVE: We aimed at assessing the effect of fatty and lean fish intake on the lipoprotein subclasses in an intervention study.

METHODS: The intervention study included 33 patients with coronary heart disease, who were aged 61.0 ± 5.8 (mean \pm SD) years. The subjects were randomly assigned to a fatty fish (n = 11), lean fish (n = 12), or control (n = 10) diet for 8 weeks. Fish diets included at least 4 fish meals per week. Subjects in the control group consumed lean beef, pork, and chicken. Lipoprotein subclasses and their lipid components were determined by nuclear magnetic resonance spectroscopy.

RESULTS: Concentrations of n-3 fatty acids and docosahexaenoic acid increased in the fatty fish group. The concentrations of cholesterol, cholesterol esters, and total lipids in very large high-density lipoproteins (HDLs) increased in the fatty fish group (overall difference P = .005, P = .002, and P = .007, respectively; false discovery rate P = .04, P = .04, and P = .05, respectively). The mean size of HDL particles increased in the fatty fish group (9.8 \pm 0.3 nm at baseline and 9.9 \pm 0.4 nm at end of study; overall difference P = .004, false discovery rate P = .004. The fish diets did not affect very-low-density lipoprotein or low-density lipoprotein size.

CONCLUSION: Fatty fish intake at least 4 times per week increases HDL particle size which might have beneficial effect in patients with coronary heart disease.

© 2014 National Lipid Association. All rights reserved.

Fatty fish contains long-chain n-3 fatty acids, namely eicosapentaenoic and docosahexaenoic acids (EPA and DHA), which in several studies were shown to reduce serum triglycerides.^{1,2} The effect of fish oils on total, low-density

^{*} Corresponding author.

E-mail address: arja.erkkila@uef.fi

Submitted January 24, 2013; revised June 24, 2013. Accepted for publication September 25, 2013.

lipoprotein (LDL), or high-density lipoprotein (HDL) cholesterol has been minor.² However, traditional lipid panels with total lipoprotein concentrations are inadequate to evaluate changes in multiple characteristics of the lipoproteins, such as those of HDL.^{3,4} With the use of nuclear magnetic resonance (NMR) spectroscopy, lipoprotein particles of different sizes and a variety of lipid constituents in unfractionated serum and plasma can be analyzed.^{5–7} Knowledge on the association between lipoprotein particles and cardiovascular disease (CVD) risk has deepened with the use of the new measures; for example, in some studies large HDL particles have been associated with lower CVD risk, whereas small HDL particles have been associated with higher CVD risk.^{8,9} However, a recent study suggested that the average HDL diameter does not significantly differ between young patients with myocardial infarction and controls.¹⁰

Only few dietary interventions have reported results on lipoprotein subclass profiles.^{11,12} Some studies that assessed the effect of use of fish oil or DHA oil supplements have been published.^{13–16} Only 1 study has previously assessed the effect of fish within the context of low saturated-fat diet on lipoprotein particles.¹¹ We have

	Fatty fish (n = 11)	Lean fish (n = 12)	Control ($n = 10$)	P value*
Age, years, mean \pm SD	62.1 ± 6.3	60.7 ± 5.1	60.2 ± 6.4	.58
Sex, female/male, n/n	3/8	2/10	1/9	.75
Body mass index (calculated as kg/m ²), mean \pm SD	26.8 ± 3.1	27.8 ± 2.1	27.0 ± 2.8	.63
Systolic blood pressure, mm Hg, mean \pm SD	124 ± 16	126 ± 11	129 ± 14	.69
Diastolic blood pressure, mm Hg, mean \pm SD	81 ± 8	84 ± 9	82 ± 9	.70
Current smoking, n	1	1	2	.71
Use of medications, n				
Use of statin [†]				.34
Atorvastatin	4	7	3	
Simvastatin	5	5	4	
Rosuvastatin	2	0	3	
Aspirin	10	11	8	.66
ACE inhibitor	3	б	6	.30
Calcium antagonist	3	4	2	.78
Oral anticoagulant	4	4	5	.71
Nitrate	2	4	3	.70

Table 1 Characteristics of the subjects at baseline of the intervention

ACE, angiotensin-converting enzyme.

*Determined by analysis of variance or χ^2 test.

†The doses of statins were 10-40 mg/d for atorvastatin and simvastatin and 10-20 mg/d for rosuvastatin.

Download English Version:

https://daneshyari.com/en/article/2965856

Download Persian Version:

https://daneshyari.com/article/2965856

Daneshyari.com