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a b s t r a c t

The purpose of this paper is to present an overview of selected aspects of the mathematical modeling of
multiphase flows, including the formulation of governing equations, gas/liquid interfacial forces and bub-
ble/bubble interactions. Links between the combined physical, mathematical and computational models
are discussed, including the recent progress in, and the limitations of, computational multiphase fluid
dynamics (CMFD). Major differences and similarities are analyzed between the interpenetrating-fluids
multifield modeling concept and the model of dispersed two-phase flows. Conditions are formulated
under which the multifield modeling framework is applicable to gas/liquid dispersed bubbly flows. Also,
the interactions between the continuous and dispersed fields are discussed, including a new mechanis-
tic modeling concept for the turbulence-induced interfacial forces between the continuous liquid and
dispersed bubbles. Finally, a multigroup approach to the modeling of bubble coalescence and breakup is
presented.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The multifield modeling concept has become a very popular
approach to simulate multidimensional two- and multiphase flow
and heat transfer. Although the multifield conservation equations
seem to be a direct extension of those governing single-phase flows,
it turns out that the averaging procedure introduces several con-
straints on the formulation of individual models.

One of the objectives of this paper is to present selected theo-
retical aspects of applying the multifield modeling framework to
dispersed gas/liquid flows. The emphasis is given to a consistent
formulation of ensemble-averaged conservation equations, and the
associated models of interfacial phenomena between the continu-
ous and disperse fields.

The accuracy of computational predictions of gas/liquid two-
phase flow and heat transfer strongly depends on the proper
physical formulation of the governing interfacial phenomena. Sev-
eral models of the mechanisms governing interfacial interactions
have been developed to date, in particular for dispersed particle
flows (Drew and Passman, 1998; Tiwari et al., 2006), but also for
slug flows (Anglart and Podowski, 2002) and annular flows (Antal et
al., 2001). Whereas most theoretical/analytical models are based on
mechanistic principles, they are normally complemented by addi-
tional phenomenologically-based closure laws and/or adjustable
coefficients.
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New mechanistic models of gas-bubble/liquid interfacial forces
are discussed in this paper. In particular, a complete turbulence-
induced interfacial force is formulated, which is defined uniquely
(i.e., without using arbitrary adjustable coefficients). This force is
responsible for driving bubbles away from the wall in the near-
wall region, and flattening void fraction distribution the central
flow area, although in each region a different force component plays
the dominant role. Thus, the new force combines the roles of the
commonly used turbulent-dispersion force and wall force.

2. Multifield modeling concept of two-phase flow

2.1. Generic ensemble-averaged conservation equations of
multifield model of interpenetrating immiscible fluids

Assuming that the k-th (k = 1, 2, . . ., N) component of the mul-
tifluid flow can be modeled using the concept of continuum, the
corresponding Eulerian conservation equations for mass, momen-
tum and energy, respectively, become

∂�k

∂t
+ ∇ · (�kvk) = 0 (1)

∂ (�kvk)
∂t

+ ∇ · (�kvkvk) = −∇pk + ∇ · �--k
+ �kg (2)

∂ (�kek)
∂t

+ ∇ · (�kvkek) = −∇ ·
[
(−pkI--

+ �--k
) · vk

]
− ∇ · q′′

k + �kg · vk

(3)
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These equations are valid only at locations that pertain to fluid-
k at a given time instant. At the boundaries between the fluids or
phases (which may vary with time), appropriate interfacial con-
ditions must be formulated, such as those for the continuity of
velocity, shear stress and heat flux. Note that if the interfaces are
being modeled as sharp discontinuities in fluid density and other
properties, parameters such as pressure and velocity and tempera-
ture gradients may also experience discontinuities.

The multifield modeling concept of interpenetrating fluids is
based on applying the time and space, or, in general, ensemble
(statistical) averaging techniques to instantaneous conservation
equations for each fluid. The resultant equations are determined
with respect to a common physical and computational domain, and
include terms accounting for the various interfacial effects between
the individual fields.

A typical form of conservation equations for mass, momentum
and energy, obtained by applying the appropriate averaging proce-
dure to Eqs. (1)–(3), respectively, can be written as

∂ (˛k�k)
∂t

+ ∇ · (˛k�kv̄k) = �k (4)

∂ (˛k�kv̄k)
∂t

+ ∇ · (˛k�kv̄kv̄k)

= −∇(˛kp̄k) + ∇ · (˛k�̄--
t
k
) + ˛k�kg + Mi

k (5)

∂ (˛k�kēk)
∂t

+ ∇ · (˛k�kv̄kēk)

= −∇ · (˛kq̄′′t
k) + ∇ ·

[
˛k(−p̄kI--

+ �̄--
t
k
) · v̄k

]
+ ˛k�kg · v̄k + Ei

k (6)

where �̄--
t
k

= �̄--
�
k

+ �̄--
Re
k

is the total combined shear and turbulent

shear stress, q̄′′t
k = q̄′′k

k + q̄′′Re
k is the total heat flux,Mi

k is the interfa-
cial force per unit volume exerted on field-k by the other fields, and
Ei

k is the corresponding interfacial energy transfer rate. Whereas
the interfacial mass transfer is directly related to the net heat trans-
fer rate at the interface, the interfacial transfer of momentum and
energy also involve the effects of interfacial pressure and shear
stress.

For the sake of clarity, let us consider a two-field model of
two interpenetrating immiscible fluids. In such case, the interfacial
momentum and energy transfer terms can respectively, be rewrit-
ten as

Mi
k= Mi

k + p̄i
k∇˛k − �̄--

i
k

· ∇˛k + �kv̄i (7)

Ei
k = Ei

k −
[

(−p̄i
kI--

+ �̄--
i
k
) · v̄i

]
∇ · ˛k + q̄′′i

k · ∇˛k + �kei
k (8)

for k = 1, 2, where p̄i
k

is the interfacial pressure on field-k, �--
i
k

is the

interfacial shear stress on field-k, v̄i
k is the velocity at the interface

between field-k and field-j, q′′i
k is the average interfacial heat flux

between field-k and the interface with field-j, and ei
k

is the interfa-
cial specific energy of field-k at the interface between this field and
field-j. Also, Mi

k is the effective interfacial force on field-k per unit
volume of the mixture, and Ei

k
is the interfacial energy transfer rate

to field-k per unit volume. Naturally, ˛1 + ˛2 = 1 and �1 + �2 = 0.
Summing up Eq. (7) over both fields yields the momentum inter-

facial jump condition

Mi
J=Mi

1 + Mi
2 = Mi

1 + Mi
2 + (p̄i
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(9)

Similarly, the energy interfacial jump condition can be obtained
from Eq. (8) as

Ei
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Let us sum-up each of the following equations: Eq. (4), Eq. (5)
and (Eq. (6) over the individual components (k = 1, 2). Defining

�m = ˛1�1 + ˛2�2 (11)

vm = ˛1�1v̄1 + ˛2�2v̄2

�m
(12)

pm = ˛1p1 + ˛2p2 (13)

�̄--
t
m

= ˛1�̄--
t
1 + ˛2�̄--

t
2 (14)

em = ˛1�1e1 + ˛2�2e2
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(15)

q′′t
m = ˛1q′′t
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2 (16)

we obtain a rigorous form of the mixture conservation equations.
In particular, the mass conservation (continuity) equation becomes

∂�m

∂t
+ ∇ · (�mv̄m) = 0 (17)

Similarly, the mixture momentum equation can be written as

∂ (�mv̄m)
∂t

+ ∇ · (�mv̄mv̄m)

= −∇p̄m + ∇ · (�̄--
t
m

+ �̄--
pturb
slip

) + �mg + Mi
J (18)

where Mm
J is the interfacial momentum jump, given by Eq. (9), and

�̄--
pturb
slip

is the phasic-slip-induced pseudo-turbulent stress given by

�̄--
pturb
slip

= − ˛1�1˛2�2

�m
(v̄2 − v̄1)(v̄2 − v̄1) (19)

The following mixture energy conservation equation can be
derived in a similar manner

∂ (�mēm)
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t
m
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]
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J

(20)

where Ei
J is the interfacial momentum jump, given by Eq. (10), and

q̄′′pturb
slip is the phasic-slip-induced pseudo-turbulent heat flux given

by

q̄′′pturb
slip =˛1�1˛2�2

�m
(ē2 − ē1)(v̄2 − v̄1) (21)

For fully-developed flows in pipes and conduits of different
shapes, the interfacial jump practically decreases to zero, so that Eq.
(18) reduces to a typical form of momentum equation for an equiv-
alent single-phase fluid. In the case of one-dimensional models,
the slip-induced pseudo-turbulent stress term is normally obtained
from the drift-flux model.
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