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The usual method to account for a finite number of blades in blade element calculations of wind turbine
performance is through a tip loss factor. Most analyses use the tip loss approximation due to Prandtl
which is easily and cheaply calculated but is known to be inaccurate at low tip speed ratio. We develop
three methods for the direct calculation of the tip loss. The first is the computationally expensive
calculation of the velocities induced by the helicoidal wake which requires the evaluation of infinite
sums of products of Bessel functions. The second uses the asymptotic evaluation of those sums by
Kawada. The third uses the approximation due to Okulov which avoids the sums altogether. These

Ke ds: . . . .
Vsji/;:;otruibi ne methods are compared to the tip loss determined independently and exactly for an ideal three-bladed
Tip loss rotor at tip speed ratios between zero and 15. Kawada's asymptotic approximation and Okulov's equa-

tions are preferable to the Prandtl factor at all tip speed ratios, with the Okulov equations being generally
more accurate, In particular the tip loss factor exceeds unity near the axis of rotation by a large amount at
all tip speed ratios, which Prandtl's factor cannot reproduce. Neither the Kawada nor the Okulov
equations impose a large computational burden on a blade element program.

© 2016 Elsevier Ltd. All rights reserved.
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1. Introduction

The tip loss factor, F, is used routinely in blade element and other
analyses of wind turbine rotors to account for the finite number of
blades, N. It reduces the calculated rotor power by 5—10%, eg
Clifton-Smith [1] and, therefore, must be represented accurately.
Blade element momentum theory (BEMT) balances the forces on
the blades against the changes in momentum and angular mo-
mentum in the annular streamtube that intersects the element, eg
Hansen [2]. The streamtube equations are formulated in terms of
the average velocity in the tube whereas the forces on the blades
depend on the velocity at the blade. These velocities become equal
only when N — . In terms of the axial induction factor, g, the axial
velocity normalized by the wind speed is 1 — a in the streamtube
and 1-—a;, at the blade. Following Glauert [3], most authors,
including Shen et al. [4], have analyzed the tip loss factor as
F = a/ay. Refs [1] and [4] discussed the incorporation of F in blade
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element equations. The latter recommends the method of de Vries
[5] as giving the most consistent results. The purpose of this paper
is not to continue that discussion but to investigate the determi-
nation of F.

Nearly all BEMT analyses use Prandtl's approximation for F, eg
Ref. [3] and Wald [6], which will be denoted Fp. Its usual form is

Fp:%cos*] [exp(—N(1 —r))} (1)

2rsing

where r is the radius normalized by the blade tip radius, and ¢ is the
“inflow” angle between the total velocity at the blade and the axial
direction. Note that Fp < 1. Fp has the great advantage of being
easily and quickly determined in BEMT computer codes that must
iterate to convergence at each blade element. Prandtl derived the
original form of Fp by representing the helicoidal trailing vorticity
of a blade by semi-infinite two-dimensional laminae as explained
by Wald [6]. This restricts Fp to high tip speed ratio, A, whereas
there are important examples of wind turbine operation at low A,
for example, waterpumping windmills and conventional large
turbines operating near the shut down wind speed. Furthermore,
there are technologies, such as diffuser-augmented turbines, for
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which Fp is unlikely to provide an accurate tip loss.

Shen et al. [4] adapted (1) to give “a correction to the two-
dimensional aerofoil data in the tip region” by multiplying the
argument of the exponential by

g =exp[—c1(NA - ) + c3] (2)

with provisional values of ¢; = 0.125, ¢, = 21, and c3 = 0.1.

Both a and ay, are induced by the trailing vortices only, at least to
the accuracy of the lifting line representation of a rotor and its wake
which is implicitly assumed in BEMT. Thus it is possible to deter-
mine F directly, but this has never been done, presumably because
of the high computational cost. This paper presents three methods
for calculating F in BEMT and tests them over the range 0 <A< 15
for an ideal three-bladed rotor. Comparison is made against the
exact F determined independently. The first method evaluates the
equations for the velocity induced by the helical vortices in the
wake. This is computationally too expensive to be used routinely,
but sets the standard for the others, which are approximate
methods. The second is the asymptotic equations of Kawada [7] and
the third is the equations of Okulov [8]. All methods are more ac-
curate than Fp at all investigated tip speed ratios. Moreover, the
second and third do not significantly increase the computational
burden compared to the use of Equation (1).

We test the accuracy of tip loss calculations for a Betz-Goldstein
optimized rotor. The Goldstein function gives the optimal loading
on an N— bladed rotor according to

Gn(r) = NIn(r)A/(4mw(1 — w)) (3)

where w is the constant axial velocity of the rigid helicoidal sheet
representing the wake at the rotor, as detailed by Wald [6] and
Okulov & Serensen [9]. The implication is that vortex pitch, p, given
by

p=dz/di=(1-w)/A (4)

where z is axial location of a point on the vortex and 0 is its
circumferential position, is constant with radius. The next Section
formulates the three direct calculations of F. Section 3 describes the
implementation of those calculations for optimal rotors and ex-
plains the determination of w. Section 4 presents the results for a
wide range of A and the final section gives the conclusions. The
Appendix gives further details of the behaviour of F for small radius
at low A

2. The tip loss due to a helical wake

One of the reasons that F is not computed directly is the
complexity of the equations describing the velocities induced by
the helicoidal vortex sheet in the wake of a wind turbine rotor,
Okulov et al. [10]. Since [ 10] was published, we became aware of the
ground-breaking work of Kawada [11] [7], (see Fukumoto et al. [12])
which will be used extensively in the present analysis. There are no
known analytical solutions for the velocities induced by expanding
helical vortices, so we begin by stating the equation for the velocity
induced at radius r by a semi-infinite vortex originating at the same
z butradius t and pitch p. t and p are constant throughout the wake.
The combination of all such vortices in the wake is sufficient to
determine a and a;, because the bound vorticity of the blades
cannot contribute to the average induced velocity through the rotor
or to the velocity at the blade. Kawada [7] analyzed the induced
azimuthal velocity and we follow this lead. For the Betz-Goldstein
rotors studied here, it does not matter which velocity component
is used to find F because the vortex pitch is constant across the

wake. The equation for the induced azimuthal velocity at the blade
Ugp is

Ugp(r) = é\;—l;tr% for r<t and
(5)
NI  NI't NI't
= Znr Fpr% = uy(r) +WS3 forr>t

using the notation of Hardin [ 13]. The circulation, I, and the lengths
are normalized by the wind speed and tip radius. The tip loss is
given by F = uy(r)/ug(r) where uy is the average velocity in the
streamtube. In (5)

1

and

S3 = i ml;,(mt/p)Km(mr/p)cos(md) )
1

where I(.) and K(.) are modified Bessel functions in standard no-
tation and the differentiation is with respect to the argument. The
azimuthal angle 6 is zero for a vortex originating from the same
blade. Equations (5)—(7) are due to Hardin [13] but Kawada [11]
derived analogous equations for the light-loading approximation
introduced by Goldstein [14].

In the equation for F, uy is easy to evaluate, but the calculation of
uy p, using (5)is computationally unattractive because of the infinite
sums in (6) and (7) and the need to express each of the two de-
rivatives as Bessel functions of adjacent orders. Nevertheless
Equations (5)—(7) for N trailing vortices can be written in a form
suitable for BEMT:

1

Ug (1) = uy(r) + 2npr

( S N (mNe/p) [ €53 (1 (mNe/p)
m=1 0

+ Imn41 (MNt/p))dt — Z MNIyn (mNr/p)
m=1

1
[ €5 K1 (mNe/p) + Ko (mNt/p))dt)

T

Equation (8) will be approximated to find a; at the midpoint of
each element from the contributions of the distinct vortices origi-
nating at the junctions of all the elements with a strength equal to
the difference in the circulation of the adjacent elements. This
formulation avoids the self-induced velocity of the trailing vortices
which depends on the singularities due to the swirl and the vortex
curvature, Boersma & Wood [15]. The summations in (8) are writ-
ten separately to correspond with the two equations in (5) and
because the two integrals were evaluated separately.

In obtaining Equation (8) the expressions for S; and S3 have
been summed over the N vortices at each t. This results in a major
simplification because

N-1
> cos(2mmj/N) =N if m is a multiple of N and 9)
j=0

=0 otherwise

As first realized by Kawada (7), only terms that are multiples of
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