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a b s t r a c t

This paper presents an analysis of potential technological advancements for a 1.5 MWwind turbine using
a hybrid stochastic method to improve uncertainty estimates of embodied energy and embodied carbon.
The analysis is specifically aimed at these two quantities due to the fact that LCA based design decision
making is of utmost importance at the concept design stage. In the presented case studies, better results
for the baseline turbine were observed compared to turbines with the proposed technological ad-
vancements. Embodied carbon and embodied energy results for the baseline turbine show that there is
about 85% probability that the turbine manufacturers may have lost the chance to reduce carbon
emissions, and 50% probability that they may have lost the chance to reduce the primary energy
consumed during its manufacture. The paper also highlights that the adopted methodology can be used
to support design decision making and hence is more feasible for LCA studies.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The development of efficient and cleaner energy technologies
and the use of renewable and new energy sources will play a sig-
nificant role in the sustainable development of a future energy
strategy [20,63]. It is highlighted in International Energy Agency
(2013) that the development of cleaner and more efficient energy
systems and promotion of renewable energy sources are a high
priority for (i) economic and social cohesion, (ii) diversification and
security of energy supply and (iii) environmental protection. Elec-
tricity generation using wind turbines is generally regarded as key
in addressing some of the resource and environmental concerns of
today. According to the World Wind Energy Association [64] wind
energy technology has steadily improved and costs have declined.
This technological progress is obvious in the movement to better

wind conditions and shift to higher nominal power of wind tur-
bines [60,62]. However, all renewable systems for converting en-
ergy into usable forms such as electricity have environmental
impacts associated with them [11,31] and is an important issue in
mainstream debate. Further, as pointed out by Chen et al. [8] and
Yang et al. [65]; it is essential that the long term sustainability of
such systems are scrutinized to support the astonishing growth
(actual plus planned) of wind farms as well as to allow policy
makers to take robust decisions to mitigate climate change through
the implementation of this technology at the design stage.

The production of renewable energy sources, like every other
production process, involves the consumption of natural resources
and energy as well as the release of pollutants [2]. Life cycle
assessment (LCA) is a popular way of measuring the energy per-
formance and environmental impacts of wind energy [11,40].
Hammond and Jones [23] defined embodied energy of a material as
the total amount of primary energy consumed over its life cycle.
This would normally encompass extraction, manufacturing and
transportation and the terminology has been in use for over four
decades [10]. In a similar fashion embodied carbon refers to the life
cycle greenhouse gas emissions (expressed as carbon dioxide
equivalents e CO2e) that occur during the manufacture and
transport of a material [8]. Embodied energy and embodied carbon
assessments are considered a subset of LCA studies.

Embodied energy and embodied carbon are traditionally esti-
mated deterministically using single fixed point input values to
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generate single fixed point results [38]. Lack of detailed production
data and differences in production processes result in substantial
variations in emission factor (EF) and embodied energy coefficient
(EEC) values among different life cycle inventory (LCI) databases
[53,59]. Hammond and Jones [23] note that a comparison of
selected values in these inventories would show a lot of similarities
but also several differences. These variations termed as “data un-
certainty” in Huijbregts [28] significantly affect the results of
embodied energy and embodied carbon LCA studies. Uncertainty is
unfortunately part of embodied carbon and energy analysis and
even data that is very reliable carries a natural level of uncertainty
[23,30]. Hence, the analysis of data uncertainty is a significant
improvement to the deterministic approach because it provides
more information for decision making [59,30,53,54].

A number of generally accepted and well understood methods
such as stochastic modelling, analytical uncertainty propagation,
interval calculations, fuzzy data sets and scenario modelling are
normally used to propagate uncertainty in LCA analysis. In a sur-
vey of approaches used to incorporate uncertainty in LCA studies,
Lloyd and Ries [38] have found that the majority of the published
work employed scenario modelling to propagate uncertainty on
LCA outcomes [40,21,22,12,56,57,66,19,67,43,45,3,39], while only
three [30,18,32], have employed stochastic modelling to propagate
uncertainty. Of the twelve studies using scenario modelling, all
assessed scenarios using sensitivity analysis, while for the studies
employing stochastic modelling, all used Monte Carlo simulation
with random sampling. The Monte Carlo analysis method used by
Kabir et al. [30], Fleck and Huot [18] and Khan et al. [32] performs
well for cases when reliability of the uncertainty estimate is not of
utmost importance. This method has a drawback when applied, as
due to its “rule of thumb” nature it may lead to inaccurate results.
For more reliable results, Lloyd and Ries [38] highlights that the
determination of significant contributors to uncertainty, selection
of appropriate distributions and maintaining correlation between
parameters are areas requiring better understanding.

In this study, a methodology (termed as HDS) for improving
uncertainty estimate is presented and discussed. The method em-
ploys the same basics as the Monte Carlo analysis but has a key
distinction, aiming at removing the drawback of the Monte Carlo
analysis method by employing a stochastic pre-screening process
to determine the influence of parameter contributions. The very
reliable statistical method is then used to estimate probability
distributions for the identified critical parameters. By applying the
HDS method to a baseline 1.5 MW wind turbine and four Tech-
nology Improvement Opportunity variants [9,34], the uncertainty
estimates of embodied energy and embodied carbon are examined.
This methodology can be a very valuable tool for making informed
decisions at the design stage in order to make savings on embodied
energy and embodied carbon by taking into consideration the un-
certainty estimates of these quantities. The overall contribution of
this study is to present an analysis of potential technological ad-
vancements for a 1.5 MW wind turbine using a hybrid stochastic
method to improve uncertainty estimates of embodied energy and
embodied carbon. The organisation of the content of this paper is as
follows: Section 2 explains the fundamentals of the methodology.
Section 3 contains a description of the case studies and their
background theory. In Section 4 the results are analysed and dis-
cussed. Finally, in Section 5, conclusion and future work are
presented.

2. Methodology

Statistical and Data quality indicator (DQI) methods are used to
estimate data uncertainty in LCA with different limitations and
advantages [38,59]. The statistical method uses a goodness of fit

test to fit data samples characterizing data range with probabilistic
distributions if sufficient data samples are available [59]. On the
other hand, the DQI method estimates data uncertainty and reli-
ability based on expert knowledge and descriptive metadata e.g.
source of data, geographical correlation of data etc. It is used
quantitatively [38] and qualitatively [29,38]. Compared to the sta-
tistical method the DQI costs less, although it is less accurate than
the statistical method [54,59]. The statistical method is preferred
when high accuracy is required, though its implementation cost is
high [53,59]. The DQI method is generally applied when the accu-
racy of the uncertainty estimate is not paramount, or the size of the
data sample is not sufficient enough for significant statistical
analysis [59].

Considering the trade-off between cost of implementation and
accuracy, Wang and Shen [59] presented an alternative stochastic
solution using a hybrid DQI-statistical (HDS) approach to reduce
the cost of the statistical method while improving the quality of the
pure DQI method in whole-building embodied energy LCA. The
study focused on the reliability of the HDS approach compared to
the pure DQI without considering the effect of either approach on
the decisionmaking process. An application test case to the analysis
of embodied energy and embodied carbon of potential 1.5 MW
wind turbine technological advancements and the effect of these
approaches on decision making is presented here to validate the
methodology.

2.1. Embodied energy and embodied carbon estimation

This study considers embodied energy and embodied carbon as
the primary environmental impacts to be investigated Wang and
Sun [60] and Ortiz et al. [44] express embodied carbon and
embodied energy mathematically as follows:

Embodied Carbon ¼
Xn
i¼1

Qi � EFi (1)

Embodied Energy ¼
Xn
i¼1

Qi � EECi (2)

Where

Qi ¼ Quantity of material i
EECi ¼ Embodied energy coefficient of material i
EFi ¼ Emission factor of material i

Since the purpose of the different wind turbine designs is
electricity production, the functional unit is defined as ‘generation
of 1 KWh of electricity’. The scope of the study for all the wind
turbine design options considered is from ‘cradle to gate’.

2.2. Qualitative DQI method

Qualitative DQI uses descriptive indicators, often arranged as a
Data Quality Indicator (DQI) matrix (Table 1), to characterize data
quality. Rows in thematrix represent a quality scale, ranging from 1
to 5. Columns represent data quality indicators such as age of the
data, reliability of the data source etc. General quality for a data is
specified by an aggregated number that takes into account all the
indicators. For example if three indicators are assigned scores of (1,
3, 5) respectively for a given parameter, and the indicators are
equally weighted, the parameter's aggregated DQI score is
P ¼ 1 � 1/3 þ 3 � 1/3 þ 5 � 1/3 ¼ 3.
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