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a  b  s  t  r  a  c  t

Metabolic  pathway  analysis  facilitates  understanding  or designing  a complex  metabolic  system  and
enables  prediction  of steady-state  metabolic  flux distributions.  A  serious  problem  of elementary  mode
(EM)  or  extreme  pathway  (Expa)  analysis  is  that the  computational  time  increases  exponentially  with
an  increase  in network  sizes,  which  makes  the  computation  of  the  EMs/Expas  expensive  and  infeasible
for  large-scale  networks.  To  overcome  such  problems,  we proposed  a fast  and  efficient  algorithm  named
complementary  EM (cEM)  analysis.  To achieve  the  computational  time  improvement,  we  employ  the  EM
decomposition  method  that  explores  EMs or linear  combinations  of  them  which  are  responsible  for  the
metabolic  flux  distributions.  Flux balance  analysis  (FBA)  is  used  to determine  possible  ranges  of  metabolic
flux  distributions  as  the  input  data  necessary  for the  EM  decomposition  method.  The  maximum  entropy
principle  (MEP)  is  employed  as an  objective  function  for estimating  the  coefficients  of cEMs.  To demon-
strate  the feasibility  of  cEM  analysis,  we compared  it with  EM/Expa  analysis  by  using  two  medium-scale
metabolic  networks  of Escherichia  coli and  a  genome-scale  metabolic  network  of head  and  neck  cancer
cells.  The  cEM  analysis  greatly  reduces  the  computational  time  and  memory  cost,  exposing  a new  window
for  large-scale  metabolic  network  analysis.

© 2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Systems biotechnology is an approach to develop comprehen-
sive and ultimately predictive models of how components of a
biological system reproduce its observed behavior. Mathemati-
cal modeling was proven successful when applied to relatively
small-scale systems, while applications to large-scale models
are being challenged by the technical advances that generate
high-dimensional and high-throughput data [1]. Since cellular
metabolic and regulatory networks are often large and complex,
the construction and analysis of their computational models can
be useful for identifying physiological states and evaluating the
effects of network perturbations on desired phenotypes. Recently,
genome-scale computational models have gained increasing
prominence and importance; capturing stoichiometric models
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with thermodynamic constraints have been published for over 30
organisms [2] ranging from relatively simple prokaryotes such as
Escherichia coli, to complex eukaryotes such as Homo sapiens [3,4].

Metabolic pathways are complex in every living cell, where a
coherent set of enzymes catalyze various biochemical reactions
[5–7]. Pathway-based analysis generally employs a constraint-
based modeling approach [8], e.g., FBA that uses a stoichiometric
matrix and an objective function to define a network’s allowable
solution space. The target flux capacity is provided by optimizing
a specific objective function such as cell growth, energy, biomass,
adenosine triphosphate (ATP) production or metabolite synthesis
[9,10].

Metabolic pathway analysis has focused on two  approaches, ele-
mentary modes (EMs) [11] and extreme pathways (Expas) [12].
EMs  are a minimal set of reactions that can operate in a steady
state, while Expa analysis contains one additional constraint to
make all Expas systematically independent. EM analysis allows one
to systematically enumerate all independent minimal pathways
that are stoichiometrically and thermodynamically feasible and
to offer great opportunities for studying functional and structural
properties of metabolic pathways [13–15]. The EM-based enzyme
control flux (ECF) and genetic modification of flux (GMF)  are very
effective in correlating transcriptome or proteome data to their
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associated metabolic network architecture or flux distributions
[16–19]. A serious problem of EM analysis is that the computa-
tional time increases exponentially with an increase in network
sizes, which makes the computation of the EMs  very expensive
and infeasible for large-scale networks [20–23]. For example, cen-
tral metabolism of E. coli model with 112 reactions has more than
two million EMs. When possible substrates are extended, the num-
ber of EMs  increases to more than 26 million [24]. Thus, the huge
computation time and memory storage are required to enumerate
all the EMs  of large-scale or genome-scale metabolic networks. To
overcome such problems, distributed memory parallelization and
parallel processing have been employed together with compression
of the stoichiometric matrix [25,26] or with removal of biologically
infeasible solutions [27]. On the other hand, alternative approaches
have been presented that do not enumerate the whole set of EMs
[28–30]. The EM decomposition method [29] was reported to pick
up major EMs  or linear combinations of EMs  responsible for the
flux distributions for metabolic networks, while the entire flux dis-
tributions must be input for EM decomposition.

The EM coefficients (EMCs), which indicate the quantitative con-
tribution of their associated EMs, can be estimated by maximizing a
particular objective function. While EMs  can be described by many
possible scalar products of each EM,  the predicted fluxes must be
consistent with respect to all of them. The linear programming (LP)
method is often used, where the maximum biomass and specific
metabolite formation are selected as objective functions [31]. Such
objective functions relate to the optimum physiological states, but
they are not provided for many organisms. The quadratic program-
ming (QP) could optimize EMCs by defining the objective function
as the minimal norm of the EMCs, but QP has neither a physical nor
a biological background and is still restricted to relatively small-
scale networks [32]. A serious problem is that QP depends on scalar
products of each EM.  Therefore, the QP method may not be valid
for optimizing the EMCs [33]. The linear programming denoted as
ECFLP (enzyme control flux linear programing) [16] maximizes and
minimizes each EMC  to represent its available ranges in the same
manner of the �-spectrum method [34], averaging all the estimated
EMCs. It is practically useful, but it has neither a biological nor a the-
oretical background. To obtain reliable EMCs, we proposed the MEP
algorithm [17,19], which is a universal principle established based
on Shannon entropy [35] when insufficient information is avail-
able. MEP  readily optimizes hundreds of thousands of the EMCs in
large-scale networks. MEP  is convenient in cases where no biolog-
ical objective function is available and it does not depend on the
scalar product of each EM.

In this paper, we propose complementary elementary mode
(cEM) analysis to improve the calculation speed and efficiency of
EM/Expa analyses. The cEM analysis consists of the EM decompo-
sition method coupled with FBA and the MEP-based optimization.
FBA is used to determine many possible ranges of metabolic flux
distributions necessary for the EM decomposition method. MEP
optimizes the coefficients of cEMs to predict the flux distributions.
To demonstrate the feasibility of cEM analysis, we compared it with
EM/Expa analyses by using two medium-scale metabolic networks
of E. coli and one genome-scale metabolic network model of head
and neck cancer cells. The cEM analysis remarkably reduces the
computational time and memory cost without requiring the gen-
eration of a full set of EMs  nor any biological objective function.

2. Materials and methods

The algorithm for cEM analysis in a given steady-state metabolic
network is presented as shown in Fig. 1. The cEM analysis consists
of three steps: generation of many flux distributions by FBA, cEM
extraction by the EM decomposition method, and flux prediction by
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Fig. 1. A flow chart of cEM analysis. The white and gray square boxes are the data.
The  ovals are the algorithms.

MEP. To demonstrate the feasibility of cEM analysis, we use a simple
example model as shown in Fig. A.1 (Supplementary data A), two
medium-scale metabolic networks of E. coli [36] and one genome-
scale metabolic network model [37]. The mathematical procedure
of cEM analysis is intelligibly illustrated (Supplementary data B).

2.1. Elementary mode (EM) analysis

Metabolic networks can be represented by a stoichiometric
matrix S. The rows and columns of S correspond to the metabolites
and reactions, respectively. At the steady-state, the flux-balance
equation is given by:

S · v = 0, (1)

where v = (v1, v2,. . .,  vn)t is the vector whose elements correspond
to metabolic fluxes and n is the number of reactions. The set of all
possible solutions to Eq. (1) can be described by a set of basis vec-
tors. EM matrix P is uniquely determined from the stoichiometric
matrix and the flux vector, as follows:

v = P · �, (2)

where � = (�1, �2,. . .,  �m)t is the EMC  vector and m is the number
of EMs. The ingredients of these vectors and matrix are displayed
as follows:⎛
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The ith column for the P matrix is the ith EM vector: ei = (e1i,
e2i,. . .,  eni)t. The flux distribution can be also represented as super-
position of the EM vectors with non-negative EMCs as follows:

v =
m∑

i=1

�iei (4)

Expa/cEM analyses were performed in the same manner as EM
analysis, where the Expas/cEMs are employed instead of the EMs
in Eqs. (2)–(4). Expa analysis splits only the internal reversible
reactions into two  irreversible reactions while not decomposing
reversible exchange reactions. Such an additional constraint makes
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