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a b s t r a c t

The wind resource and energy assessment is key to a wind farm development project. It allows for
establishing the feasibility and economic viability of the project over the typical 10- to 30-year lifetime of
a wind farm. Recent studies show that the accuracy of assessments has substantial room for improve-
ment. Estimating and reducing uncertainty is important to secure financing and ensure the confidence of
investors. A new method is proposed and demonstrated for the long-term estimation of the wind speeds
at a target site, a key step in assessments. The method is based on ensembles made of analogs between a
short-term observational record from the target site and a long-term historical record from a nearby site
or an atmospheric model. It provides a high-quality long-term wind resource estimate, characterized by
an accurate wind speed time series and frequency distribution. It also provides a reliable estimate of the
uncertainty based on the actual physical processes determining the current atmospheric flow rather than
the climatological wind distribution.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Due to reasons ranging from climate change to geopolitical se-
curity, renewable energy has increasingly received attention for the
past decades with some of the technologies becoming cost-
competitive compared to conventional power sources [1]. Among
those, wind energy is one of the fastest growing electricity gener-
ation sources in the world.

Together with the sector growth, wind turbine technology is
evolving rapidly. Hub height now averages over 80 m, accessing
stronger winds [2], while rotor diameters of 80e100 m are
increasingly the norm [3]. These turbines produce more energy but
also make the pre-construction assessment of the wind resource at
candidate wind-farm sites more difficult, due to the lack of
adequate wind observations at such heights.

Wind resource and energy assessment is key to the wind farm
development process, as it allows for establishing the feasibility
and economic viability of the project over the typical 10- to 30-
year-long lifetime of the farm. Recent data show that the accu-
racy of assessments has substantial room for improvement. DNV
KEMA [4] looked at actual power output of 89 facilities totaling 476

years of post-2000 operation and found an average overestimation
of pre-construction energy estimates of 5e8%.

A comprehensive wind resource assessment usually entails the
following tasks [4e6]:

1. Site prospecting: identification of a suitable site using cartog-
raphy (wind maps, political maps, etc.).

2. Measurement campaign: characterization of the on-site wind
resource by recording the winds for 1e4 years as close as
possible to hub height, with temporary meteorological masts
(possibly completed with remote sensing instruments).

3. Microscale vertical extrapolation: transfer of the measurements
to hub heights.

4. Long-term extrapolation: extension of the measurements to the
10- to 30-year-long operation lifetime using historical obser-
vations (nearby tall towers, surface weather stations, rawin-
sonde stations, modeled data sets such as reanalyses) and
(mostly) statistical methods.

5. Wind-farm layout design: establishment of turbine locations and
relative wind resource estimation (e.g., using computational
fluid dynamic models).

6. Gross energy production estimation: calculation of the potential
wind power for the whole site.

7. Energy losses assessment: evaluation of losses due to various
causes (equipment downtime, array losses, etc.).

8. Uncertainty estimation: careful evaluation of the uncertainty
associated with every step above.
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Evaluating and reducing the uncertainties is of particular
importance to secure financing and ensure the investor's confidence.
The uncertainties drive the probability distribution of the expected
energy production. A recent comparison of pre-construction energy
assessments for about 200 North American utility-scale wind farms
to the actual power output highlighted the following breakdown of
contributions to the total energy production uncertainty [3]:

� Measurement accuracy: 19% (step 2).
� Vertical extrapolation: 13% (step 3).
� Historical wind resource: 18% (step 4).
� Spatial variation: 22% (step 5).
� Energy losses: 13% (step 7).
� Future variability: 15% (part of step 8).

These values obviously depend on many factors, including the
project size, the terrain, and the availability of historical wind data.
Estimating and constraining (if not reducing) these uncertainties is
important.

Step 4 is the subject of this study. Awidely used procedure for the
long-term extrapolation of the wind measurements is the Measure-
Correlate-Predict (MCP)method [5e7]. It establishes relationships of
various complexities between concurrent wind measurements and
historical wind data, then it uses these relationships to transform the
historical wind data into a time series representing the long-term
wind resource at the target site. Key requirements of such
methods are that 1) the measurements correlate well to the his-
torical data (i.e., in practice a correlation coefficient at least as large
as 0.77 [6]), 2) the historical record is homogeneous, and 3) the
measurements and historical data overlap for at least 9e12 months
[7]. Caveats are that the first two conditions are sometimes hard to
meet, and additionally MCP methods are usually not adequate to
provide a wind frequency distribution [6]. Yet the wind resource
uncertainties drive the probability distribution of the expected en-
ergy production. The energy production values with probabilities of
exceedance of 50, 90 and 99% are used by lenders as a way of
determining the level of risk in investing in a wind farm [3].

We hereby propose a new method for the long-term extrapo-
lation step that provides a high-quality long-term wind resource
estimation characterized by an accurate wind speed time series, a
valid wind frequency distribution, and an estimation of this step's
uncertainty e the latter based on actual physical processes deter-
mining the current atmospheric flow rather than the climatological
wind distribution. The method is based on ensembles made of
analogs between a short-term observational record from the target
site and a long-term historical record from a nearby site or an at-
mospheric model. The strengths of the method lie in:

� Quality of results: the reconstructed long-term wind resource
exhibits a good correlation with on-site wind observations,
virtually no bias, and a low root-mean-squared error.

� Extent of results: a wind resource frequency distribution with
uncertainty bounds that is based on actual physical processes
rather than a more typical climatologically based value, and that
is useful for the energy production estimation [6].

� Simple requirements: the necessary data already exist (i.e.,
reanalysis and 1e4 years of observations), and the correlation
coefficient between the historical data and the observations
does not need to be high (0.5 is acceptable), renderingmore data
sources “usable”.

� Easeofuse: it canbe runonapersonal computer; for instance, a10-
year-long time series can be reconstructed in few tens of seconds.

Section 2 describes the testing sites and associated data used for
the demonstration of the method, as well as the method's

functioning and sensitivity to key aspects of the algorithm. Section
3 presents the results and compares them to a MCP reference.
Section 3.3 discusses the direct relevance of this method for wind
resource assessments and conclusions are drawn in Section 4.

2. Data sets and long-term wind resource estimation
methods

2.1. Data for hypothetical wind farm sites

For the purpose of demonstrating the analog ensemble method,
we established nine hypothetical wind farm target sites. Observa-
tions at all nine sites are hourly wind speed measurements at fixed
heights above ground level, and constitute both a proxy for site
measurements typically used in the wind resource assessment
process, and data for validating the results. Their characteristics are
listed in Table 1. Six sites coincided with locations where quality-
checked, medium/long-term, near-hub-height wind measurements
were publicly available. The remaining three sites coincide with lo-
cationswhere realmastmeasurements (i.e., step 2)weremade. They
are proprietary data and therefore not all results will be shown.

For each target site, meteorological fields from NASA's Modern-
Era Retrospective Analysis for Research and Applications (MERRA)
were used as historical data [8]. MERRA is a freely available high-
quality global reanalysis of weather occurring since 1979, and one
of the few global atmospheric reanalyses that use data from the
entire constellation of NASA Earth Observing System satellites.
Native-resolution (0.5� in latitude � 0.67� in longitude, terrain-
following hybrid sigma-pressure coordinate) hourly surface tur-
bulent flux diagnostics and atmospheric single-level diagnostics
were retrieved [9]. The planetary boundary layer height, temper-
ature, specific humidity, and eastward and northward winds of the
lowest layer came from theMERRA data collection tavg1_2d_flx_Nx,
and the surface pressure came from tavg1_2d_slv_Nx. Data from the
four grid cells nearest each site were bilinearly interpolated to the
site's exact location. The lowest model level was used for all level-
dependent variables (63 m AGL on average).

2.2. Analog ensemble method

Analog ensemble techniques have been used with success for
short-termweather predictions [10e13]. In the context of the wind
resource assessment, the analog ensemble method draws on the
information contained in a long-term reanalysis (known as histor-
ical data) of multiple physical quantities that are related to available
targeted wind speed observations (known as the predictand)
collected over a short time period (known as training period; typi-
cally 365 days). The relationships derived within the training
period are then applied to reconstruct the wind speed at the target
site over the period for which there are no observations (hereafter
referred to as reconstructed period; e.g., the past 20 years before the
measurement campaign started).

More precisely, this is a three-stage process that is executed
independently at every target site for every hour t of the recon-
structed period, as sketched in Fig. 1:

1. The historical value of multiple physical quantities (known as
analog predictors; e.g., wind speed, wind direction, pressure,
etc.) is retrieved for a range of times (known as an analog trend)
centered around time t (red star in Fig. 1) (in web version). The
analog predictors are selected beforehand based on their known
or anticipated correlations to the predictand.

2. Other historical cases over the training period with conditions
analogous to those in the targetwindoware identified (redmarks
in top series of Fig.1) by looking at a temporal window (known as
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