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a b s t r a c t

A novel approach is presented that allows to predict fluid temperatures entering a Ground Heat
Exchanger (GHE) for parallel, series and mixed arrangements of boreholes. The method determines at
each time step the heat transfer rates occurring at each borehole so as to reproduce the fluid temperature
at the GHE inlet for a specific borehole arrangement. The analytical finite line source model is used to
compute the borehole wall temperatures, whereas the fluid temperatures are assumed to vary linearly
along the pipes. The method requires to solve a linear system of equations at a small number of time
steps. The different systems of equations for each arrangement are determined. A comprehensive 3D
finite element numerical model shows good agreement with the computed fluid temperatures. The
proposed approach is computationally very efficient. The fluid temperature unit response function can be
convolved with any desired heat load to estimate fluid temperatures at the GHE inlet for a wide variety of
scenarios.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Several analytical models are available in the literature [3,10] to
predict the temperature response resulting from operation of a
ground heat exchanger (GHE). Among the models, the finite line
source (FLS) is often used to compute the average temperature
along thewall of a borehole heat exchanger (BHE) [5,7,14,17,18]. Fast
computation of BHE wall temperature can be done efficiently by
spectral methods using either Fast Fourier Transform (FFT) [16] or
Laplace transform [11,13]. The FFT approach is faster and easier to
apply than the Laplace approach when the heat transfer occurring
at each BHE is already known. However, in a GHE, the interactions
between the BHEs imply that the heat transfer at each BHE varies in
time according to its position in the network, hence, it has to be
determined at each time step.

Cimmino et al. [4] and Lazzarotto [15] both used the Laplace
transform approach of Lamarche [11] to determine sequentially the
heat transfer and the average wall temperature at the BHEs. They
used a linear system of equations solved at each time step. Their
approach requires the numerical evaluation, at each time step, of an
inverse Laplace transform. Pasquier and Marcotte [20,21] proposed
a quite different approach where they work simultaneously on all
time steps by perturbing iteratively an initial guess heat transfer

distribution so as to meet imposed temperature signals on the BHE
wall temperatures. Their algorithm converges in a few tens of it-
erations in all examples tested, and is proven to be exact when the
number of iterations reaches the number of time steps.

Neither Cimmino et al. [4], Lazzarotto [15] and Pasquier and
Marcotte [20], compared their results to the temperatures obtained
with a full 3D numerical model, although Cimmino et al. [4]
compared their results to the numerical g-functions of Eskilson
[9] and find noticeable differences at long times. Moreover, the
previous methods focused on the determination of BHE wall tem-
perature which implicitly assume a parallel arrangement between
the BHEs. The examples in Lazzarotto [15] are all with parallel
arrangement although Lazzarotto [15] mentions, without providing
the pertaining equations, that his approach accommodates parallel
and series arrangements.

The objectives of this paper are three-folds: i. adapt the
sequential idea of Cimmino et al. [4] and Lazzarotto [15] to the
easier to apply FFT spectral approach, ii. develop the unit response
functions based on the fluid temperature at the GHE inlet rather
than based on the BHE average wall temperature, hence allowing
simulation of temperatures for parallel, series and mixed arrange-
ments, and iii. test the proposed approach with a full 3D finite
element numerical model.

The paper is structured as follows. The methodological section
presents the idea introduced by Lamarche and Beauchamp [13] of
splitting the response function in a historical and a contemporary
part. Using the FLS and the assumption of linear fluid temperature
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variation along the pipes, the remarkably simple linear systems of
equations for different BHE arrangements (parallel, series ormixed)
are then presented. The model is applied for a GHE with radial
symmetrical distribution of BHE, for parallel and mixed arrange-
ments. The results are compared to those of a full 3D numerical
model developed in COMSOL. Computational aspects are discussed
to prove the practicality of the sequential FFT approach, even for
numerous BHE and long time series. Finally, a detailed numerical
example is provided in Appendix A.

2. Methodology

An analytical model (e.g. FLS [5,14]) enables to compute the
mean temperature at the borehole wall. Under a steady state hy-
pothesis the mean fluid temperature is obtained as:

Tf ðtÞ ¼ ðq=HÞRb þ TbðtÞ (1)

where q is the heat transferred by the BHE, H is the borehole length,
Rb is the BHE equivalent thermal resistance and Tb is the average
temperature at the BHE wall. Assuming, for simplicity, a linear
variation of the fluid temperature along the pipes, one has:

TinðtÞ ¼ Tf ðtÞ þ
q

2 _mCp
; ToutðtÞ ¼ Tf ðtÞ �

q
2 _mCp

(2)

where _m is the fluid mass flow rate and Cp is the specific heat of the
fluid.

2.1. Borehole interactions

In a network of n BHEs, the wall temperature of BHE i can be
obtained by spatial superposition. Summing the contribution from
each BHE, one has:

TbiðtÞ ¼ T0 þ
Xn
j¼1

DTj/iðtÞ (3)

where DTj/i(t) is the temperature perturbation at BHE i caused by
heat emanating from BHE j.

The heat loads are assumed to be a step function with time step
Dt. The unit response function has to be calculated at times mDt,
m¼ 1.nt. It is convenient to split the temperature perturbations in

two terms, the historical part hij(mDt) due to heat transfer from 0 to
(m � 1)Dt and the present time step contribution qj(mDt)fDt(rij):

DTj/iðtÞ ¼ hijðtÞ þ qjðtÞfDt
�
rij
�

(4)

where fDt(rij) is the unit transfer function computed with the
analytical model for one time step Dt, and rij is the distance be-
tween boreholes i and j. For i ¼ j, one has rii ¼ rb. Note that the total
heat transferred by the n BHEs is qðtÞ ¼ Pn

j¼1 qjðtÞ. The historical
part hij(mDt) can be easily computed by a discrete convolution
product:

hijðmDtÞ ¼
�
~qj*f

�
ðmDtÞ (5)

where, at time t ¼ mDt, the step increment vector eqj is the vector:

eqj ¼
h
qj;1; qj;2 � qj;1;.; qj;m�1 � qj;m�2;�qj;m�1

i
(6)

and the transfer function f is the analytical model response for the
firstm time steps under a unit heat load at each BHE evaluated for a
distance rij; hij(mDt) is obtained as the mth element of the
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Fig. 1. Different possible BHE arrangements: a) parallel; b) series; c) mixed.
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Fig. 2. Location of boreholes and arrangements a) parallel, b) series.
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