

CrossMark

Metabolic reprogramming through fatty acid transport protein 1 (FATP1) regulates macrophage inflammatory potential and adipose inflammation

Amy R. Johnson ^{1,13}, Yuanyuan Qin ^{1,13}, Alyssa J. Cozzo ¹, Alex J. Freemerman ¹, Megan J. Huang ¹, Liyang Zhao ¹, Brante P. Sampey ^{1,14}, J. Justin Milner ^{1,15}, Melinda A. Beck ^{1,2,6}, Blossom Damania ^{3,5}, Naim Rashid ^{4,5}, Joseph A. Galanko ^{2,6}, Douglas P. Lee ⁷, Matthew L. Edin ⁸, Darryl C. Zeldin ⁸, Patrick T. Fueger ^{9,10}, Brittney Dietz ¹¹, Andreas Stahl ¹¹, Ying Wu ¹², Karen L. Mohlke ¹², Liza Makowski ^{1,2,5,6,*}

ABSTRACT

Objective: A novel approach to regulate obesity-associated adipose inflammation may be through metabolic reprogramming of macrophages ($M\Phi$ s). Broadly speaking, $M\Phi$ s dependent on glucose are pro-inflammatory, classically activated $M\Phi$ s (CAM), which contribute to adipose inflammation and insulin resistance. In contrast, $M\Phi$ s that primarily metabolize fatty acids are alternatively activated $M\Phi$ s (AAM) and maintain tissue insulin sensitivity. In actuality, there is much flexibility and overlap in the CAM-AAM spectrum *in vivo* dependent upon various stimuli in the microenvironment. We hypothesized that specific lipid trafficking proteins, e.g. fatty acid transport protein 1 (FATP1), would direct $M\Phi$ fatty acid transport and metabolism to limit inflammation and contribute to the maintenance of adipose tissue homeostasis.

Methods: Bone marrow derived M Φ s (BMDMs) from $Fatp1^{-/-}$ and $Fatp1^{+/+}$ mice were used to investigate FATP1-dependent substrate metabolism, bioenergetics, metabolomics, and inflammatory responses. We also generated C57BL/6J chimeric mice by bone marrow transplant specifically lacking hematopoetic FATP1 ($Fatp1^{B-/-}$) and controls $Fatp1^{B+/+}$. Mice were challenged by high fat diet (HFD) or low fat diet (LFD) and analyses including MRI, glucose and insulin tolerance tests, flow cytometric, histologic, and protein quantification assays were conducted. Finally, an FATP1-overexpressing RAW 264.7 M Φ cell line (FATP1-OE) and empty vector control (FATP1-EV) were developed as a gain of function model to test effects on substrate metabolism, bioenergetics, metabolomics, and inflammatory responses.

Results: *Fatp1* is downregulated with pro-inflammatory stimulation of M Φ s. *Fatp1*^{-/-} BMDMs and FATP1-0E RAW 264.7 M Φ s demonstrated that FATP1 reciprocally controled metabolic flexibility, i.e. lipid and glucose metabolism, which was associated with inflammatory response. Supporting our previous work demonstrating the positive relationship between glucose metabolism and inflammation, loss of FATP1 enhanced glucose metabolism and exaggerated the pro-inflammatory CAM phenotype. *Fatp1^{B-/-}* chimeras fed a HFD gained more epididymal white adipose mass, which was inflamed and oxidatively stressed, compared to HFD-fed *Fatp1^{B+/+}* controls. Adipose tissue macrophages displayed a CAM-like phenotype in the absence of *Fatp1*. Conversely, functional overexpression of FATP1 decreased many aspects of glucose metabolism and diminished CAM-stimulated inflammation *in vitro*. FATP1 displayed acyl-CoA synthetase activity for long chain fatty acids in M Φ s and modulated lipid mediator metabolism in M Φ s.

¹Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA ²Department of Nutrition, School of Medicine, University of North Carolina at Chapel Hill, NC 27599, USA ⁴Department of Nutrition, School of Medicine, University of North Carolina at Chapel Hill, NC 27599, USA ⁴Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA ⁴Department of Biostatistics, University of North Carolina at Chapel Hill, NC 27599, USA ⁵Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, NC 27599, USA ⁵Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, NC 27599, USA ⁶Nutrition Obesity Research Center, University of North Carolina at Chapel Hill, NC 27599, USA ⁶Departments of Research, NC 27799, USA ⁶Departments of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA ¹¹Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, CA 94720, USA ¹²Department of Genetics, University of North Carolina at Chapel Hill, NC 27599, USA ⁵Department of Genetics, University of North Carolina at Chapel Hill, NC 27599, USA ⁵Department of Genetics, University School of Medicine, Indianapolis, IN 46202, USA ¹¹Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, CA 94720, USA ¹²Department of Genetics, University of North Carolina at Chapel Hill, NC 27599, USA ¹²Department of Genetics, University of North Carolina at Chapel Hill, NC 27599, USA ¹²Department of Sciences and Toxicology, University of California Berkeley, Berkeley, CA 94720, USA ¹²Department of Genetics, University of North Carolina at Chapel Hill, NC 27599, USA

¹³ Co-first authors.

¹⁴ Current affiliation: Roivant Sciences, Inc. Roviant, NC, 27701, USA.

¹⁵ Current affiliation: Division of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA.

*Corresponding author. CB7461, Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. E-mail: liza.makowski@unc.edu (L. Makowski).

Received March 20, 2016 • Revision received April 8, 2016 • Accepted April 18, 2016 • Available online 23 April 2016

http://dx.doi.org/10.1016/j.molmet.2016.04.005

Conclusion: Our findings provide evidence that FATP1 is a novel regulator of M Φ activation through control of substrate metabolism. Absence of FATP1 exacerbated pro-inflammatory activation *in vitro* and increased local and systemic components of the metabolic syndrome in HFD-fed *Fatp1^{B-/-}* mice. In contrast, gain of FATP1 activity in M Φ s suggested that *Fatp1*-mediated activation of fatty acids, substrate switch to glucose, oxidative stress, and lipid mediator synthesis are potential mechanisms. We demonstrate for the first time that FATP1 provides a unique mechanism by which the inflammatory tone of adipose and systemic metabolism may be regulated.

© 2016 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords Adipose tissue macrophage; M2 macrophage; Obesity; Glycolysis; Crown-like structures; Mitochondria

Abbraviatione			
AUDIEVial	10115	∎.⊿	Interleukin 1p
	0 hydroxy 10.12 octadocadionoic acid	IL-4 II 6	Interleukin 4
	Alternatively activated magraphage		Interieuxin o
	Anemanium Chloride Detersium		
AUK	Ammonium-Chionde-Polassium	111	Insulin tolerance test
ACSL	Long chain acyl-CoA synthetase	Lamp2	Lysosome-associated membrane protein 2
AIM	Adipose tissue macrophage	LCFA	Long chain fatty acids
BMDM	Bone marrow derived macrophage	LFD	Low fat diet
BMT	Bone marrow transplant	Lipa	Lipase A
BSA	Bovine serum albumin	LPS	Lipopolysaccharide
CAM	Classically activated macrophage	$M\Phi$	Macrophage
CDP-choline Cytidine diphosphate-choline		MCP-1	Monocyte chemoattractant protein-1
CLS	crown-like structures	METSIM	The METabolic Syndromes In Men
CoA	coenzyme A	MTT	3-(4, 5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide
DMEM	Eagle's minimal essential medium	MuTHER	The Multiple Tissue Human Expression Resource
ECAR	Extracellular acidification rate	NADPH	Nicotinamide adenine dinucleotide phosphate
eQTLs	Expression quantitative trait loci	NLRP3	NLR family, pyrin domain containing 3
eWAT	Epididymal white adipose tissue	OCR	Oxygen consumption rate
FATP1	Fatty acid transport protein 1	PGF ₂₀	Prostaglandin F2 alpha
FATP1-EV	FATP1- empty vector	PPARγ	Peroxisome proliferator-activated receptor gamma
FATP1-0E	FATP1- over-expresser	PPP	Pentose phosphate pathway
GLUT1	Glucose transporter 1	PRPP	phosphoribosyl pyrophosphate
GTT	Glucose tolerance test	Pycard	Apontosis-associated speck-like protein containing a CARD
HFD	High fat diet	SAM	S-adenosylmethionine
Hmox-1	Heme oxygenase -1	SVF	Stroma vascular fraction
ΗΟΜΔιε	Homeostasis model assessment of insulin resistance	TI R4	Toll-like recentor A
	Interferon commo	TNE-4	Tumor necrosis factor alpha
ппү		1111-0	rumui neurosis iautui aipira

1. INTRODUCTION

Chronic over-nutrition results in low-grade inflammation in metabolically sensitive tissues that contributes to systemic metabolic dysregulation. In obese individuals, as much as 40% of total body composition is adipose. Adipose tissue M Φ s (ATMs) may account for up to 50% of the cellularity in the obese adipose microenvironment compared to just 10-20% in non-obese [1,2], demonstrating that ATMs play a central role in shaping the adipose inflammatory milieu. Indeed, ATMs are the primary source of inflammatory cytokines such as tumor necrosis factor alpha (TNF- α) and interleukin 6 (IL-6) in adipose tissue, and, thus, perpetuate obesity-associated inflammation and subsequent comorbidities. Adipose inflammation in obesity has been linked to insulin resistance, type 2 diabetes, cardiovascular disease, and cancer [3,4]. Understanding the etiology of metabolic associated inflammation is critical for combating metabolic diseases. Dramatic changes within the adipose microenvironment occur with the onset and progression of obesity, including an influx of monocytes [5]. Initial studies in the early 2000s described dichotomous ATM phenotypes, either pro- or anti-inflammatory [6]. Several models suggested that monocytes differentiate into pro-inflammatory, or "classically activated" M Φ s (CAM), in response to the conditions encountered within the obese adipose microenvironment. Persistent CAM activation is purported to sustain adipose inflammation, eventually leading to impaired function of this tissue [4,7,8]. Resident anti-inflammatory M Φ s (AAM), also termed "alternatively activated", are recognized to maintain tissue homeostasis, including insulin sensitivity, by supporting remodeling and secretion of anti-inflammatory cytokines [4]. *In vitro*, CAMs are modeled by activation of the so-called "M1" classical pathway upon exposure to type 1 T-helper cytokines [9]. In contrast, AAMs are activated to the "M2" phenotype by exposure to type 2 T-helper cytokines *in vitro* [6]. Recent evidence also has suggested that in both obesity and weight loss, ATMs can be "metabolically" activated and direct lipid trafficking, thus buffering against the excessive free fatty acid concentrations resulting from enhanced lipolysis in adipose [10–12]. These M Φ s are characterized by expression of both CAM- and AAM-associated surface markers, enhanced lysosome biogenesis, expression of PPAR γ responsive genes and inhibited autophagy [10,11].

As appreciation of the complexity of the ATM inflammatory phenotype has evolved, so has understanding of the metabolic signature associated with ATMs [13–15]. We and others have demonstrated that CAMs exhibit a significant up-regulation of glucose metabolism, particularly flux through the pentose phosphate pathway (PPP) to generate reactive oxygen species (ROS) [16–19]. We reported that pro-inflammatory activation is achievable by enhancing glucose metabolism via glucose transporter 1 (GLUT1) overexpression using an *in vitro* model, even in the absence of external stimuli [20], in a Download English Version:

https://daneshyari.com/en/article/3001260

Download Persian Version:

https://daneshyari.com/article/3001260

Daneshyari.com