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a b s t r a c t

The impact of wave model nonlinearities on the design loads of wind turbine monopile foundations is
delineated based on a second-order nonlinear randomwavemodel that satisfies the boundary conditions at
the free surface andby including the effects of convective acceleration in the inertial loads. The second-order
nonlinear water kinematics is developed based on a Gram Charlier series expansion using the first four
stochasticmoments of thewave process. Thewave surface velocities and accelerations are expressed using a
Taylor series expansion about themean sea level,which satisfies to the second-order, the unsteady Bernoulli
equation and normal flow condition at the free surface. The operating design loads on the monopile are
computedusing fully coupled anduncoupledmethods. The computation of themud level loads basedon the
inclusion of nonlinear wave surface kinematics is compared with those obtained when using linear waves
and Wheeler stretching. The effect of the spatial derivatives of the wave velocity on the wave surface ki-
nematics is quantified and shown to determine the wave spectral cut-off frequency limit. The spatial de-
rivatives of wave velocity also participate in the expression for the wave convective acceleration, whose
effect is demonstrated on the inertial loads on the foundation in the presence of ocean currents. The effect of
nonlinear water kinematics on the monopile design load reveals the large frequency bandwidth of wave
structure interaction, but thephasedifferencesbetween thehydrodynamic loadswith the rotor loads tend to
lower the probability of joint simultaneous extreme peaks in hydrodynamics and rotor loads.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

With offshore wind turbines moving to 30 me50 m water
depths in the near future, the hydrodynamic loads at these mod-
erate water depths can be significant in comparison to the rotor
loads, which implies the hydrodynamicmodels may require the use
of more accurate water kinematics than Airy linear wave theory or
nonlinear regular wave models [1], as presently used in design
loads simulation. Since the free surface boundary conditions are
applicable on a wave surface and not at the mean sea level (MSL),
the water kinematics is nonlinear. Only under the conditions that
the wave height is negligible with respect to the wave length and
water depth, this nonlinearitymay be neglected. Most wind turbine
load simulation codes employ geometric stretching to map the
region between the mean sea level and the wave free surface back
to a domain below the mean sea level. Wheeler stretching [2] is a
popular stretching method used in wind turbine loads predictions,
but the water kinematics obtained using Wheeler stretching can
significantly under predict or over predict wave velocities [3],

which in turn affect the design loads. A key reason for this is that
Wheeler stretching does not satisfy the Laplace equation for po-
tential flow, the error of which is negligible in deep waters, but can
be significant at moderate water depths of 35 m. Therefore at
moderate water depths, the wave models must include the wave
surface boundary conditions, which are nonlinear.

A key benefit of using nonlinear random wave models is that
the simulated process can be non-Gaussian and the effect of
higher order stochastic moments of the wave process on design
loads can be determined. This enables taller wave crests to be
simulated at a given significant wave height than when using
linear Gaussian waves, an aspect that has been observed in
measurements [4]. Various methods of deriving nonlinear random
ocean wave models have been put forth, such as through Bous-
sinesq equations [5] which compute perturbation expansions of
the velocity potential of several orders about a known vertical
station. The Boussinesq equations are accurate for shallow waters
such as for analysis of shoaling effects, but these equations may
require quartic and higher terms if wave crests are described at
moderate water depths. On the other hand, second-order
nonlinear random wave mechanics have been described at
length by various authors [6e8] and have been used in modelingE-mail address: anat@dtu.dk.
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waves for more than 30 years. However second-order nonlinear
random wave models have not found wide application in wind
turbine design codes since most offshore wind turbine design
loads at shallow water depths below 20 m are dominated by the
rotor loads. Langley [8] describes a computationally efficient
formulation for the second-order random wave elevation and this
has been extended by Moan to wave kinematics [9]. The nonlinear
wave particle velocity and acceleration for a second-order random
wave is expressed as

where B,C, Pij, Qij, Rij, Sij, are terms dependent on the wave ampli-
tude, frequency and wave number and require a fairly detailed
formulation, which is provided in Ref. [6]. The superscriptsþ and�
refer to a summation ordifference between the frequencies,ui,uj or
between thewavenumbers ki, kj, g is the acceleration due to gravity,
Ai is the linear wave amplitude and h is the water depth.

The mud level moments and forces at the base of the foundation
play a crucial role in foundation design. The influence of the
nonlinear waves on the mud level moments and forces is to be
evaluated in both fatigue and ultimate load situations. For
nonlinear waves in moderate water depths, it is realistic to utilize
the wave surface kinematics directly computed based on the mo-
ments of the stochastic process and by satisfying the free surface
boundary conditions. The Morison equation [10] is normally used
to compute the hydrodynamic loads on wind turbine support
structures, so long as the dimension of the support structure is
considered small (<20%) with respect to the wave length of the
wave. The local fluid acceleration is conventionally used as
described in many standards [10] to compute the hydrodynamic
inertial loading on offshore structures. However, the convective
acceleration of the fluid is also a factor that needs to be assessed.
Thus the usage of the total derivative of acceleration as opposed to
the partial derivative in the Morison equation may result in
increased inertial loading above the MSL, due to the convective
acceleration and its interaction with ocean currents. This effect can
be readily investigated through the use of a nonlinear wave model.
Since wind turbine support structure design relies greatly on
simulationmodels and an understanding of site specific conditions,
the work herein is focused on bringing forth potential design sce-
narios that reflect the impact of the wave models and the differ-
ences in the simulated design loads thereby achieved.

2. Stochastic analysis of nonlinear waves

Since Eq. (1) involved a double Fourier summation, it can be
time consuming to implement this at every vertical station along
the water depth where the water kinematics is to be evaluated for

long time intervals. A computationally simpler technique is sought
whereby it is not required to evaluate double Fourier summations.
Following the method of Winterstein [11], a Gram-Charlier series
may be used to approximate the second-order nonlinear wave ki-
nematics by using the first 4 moments of the stochastic wave
process. This requires that the moments of the wave stochastic
process be computed either from simulations or from experimental
observations. The moments can be readily derived, if the stochastic
wave process x(t) can be expressed as

xðtÞ ¼
X2N
j¼1

ðbjbjðtÞ þ ljb
2
j ðtÞÞ (2)

where, bj is the linear wave response parameter transformed to a
modal space, lj are the eigenvalues of the second-order coefficient
matrices, such as determined from Eq. (1) and bj are standardized
Gaussian parameters expressed in modal space. Details of the
derivation of Eq. (2) for expressing wave elevation or wave kine-
matics can be found in Refs. [8,9] and the nonlinear terms in Eq. (2)
are computed directly from Eq. (1) by reformulating the coefficients
in Eq. (1) into a matrix representation that allows an eigenvalue
analysis, details of which can be referred in Ref. [9]. Since the wave
kinematic variable x(t) is expressed as a polynomial function in Eq.
(2), its stochastic moments are directly derived. The first four mo-
ments of this second-order wave process is expressed in Eq. (3) as:

mx ¼ P2N
j¼1

lj

s2x ¼ P2N
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�
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�

a3x ¼ 1
s3x
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�
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�
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�

(3)

where a3x and a4x are the skewness and kurtosis of the wave pro-
cess, x(t). It is now possible to express x(t) using these stochastic
moments derived in Eq. (3) bymodulating a Gaussian process using
Hermite coefficients that are derived from these moments. The
Hermite coefficients are orthogonal with respect to the Gaussian
weighting function and such polynomial expansions have been
proven to be convergent [11]. This implies that the quantity of

u ¼ PN
i¼1

gki
ui

Ai
cosh ki zþ hð Þð Þ

cosh kihð Þ cos kix� uit þ bið Þ þ
XN
i¼1

XN
j¼1

BujBui Puij cos k�ij x� u�
ij t þ bi

� �
þ Quij cos kþij x� uþ

ij t þ bi

� �h i

w ¼ PN
i¼1

gki
ui

Ai
sinh ki zþ hð Þð Þ

cosh kihð Þ sin kix� uit þ bið Þ þ
XN
i¼1

XN
j¼1

BwjBwi Pwij sin k�ij x� u�
ij t þ bi

� �
þ Qwij sin kþij x� uþ

ij t þ bi

� �h i

a ¼ PN
i¼1

�gkiAi
cosh ki zþ hð Þð Þ

cosh kihð Þ sin kix� uit þ bið Þ þ
XN
i¼1

XN
j¼1

CajCai Rij sin k�ij x� u�
ij t þ bi

� �
þ Sij sin kþij x� uþ

ij t þ bi

� �h i

aw ¼ PN
i¼1

gkiAi
sinh ki zþ hð Þð Þ

cosh kihð Þ cos kix� uit þ bið Þ þ
XN
i¼1

XN
j¼1

CwjCwi Rij cos k�ij x� u�
ij t þ bi

� �
þ Sij cos kþij x� uþ

ij t þ bi

� �h i

(1)

A. Natarajan / Renewable Energy 68 (2014) 829e841830



Download English Version:

https://daneshyari.com/en/article/300190

Download Persian Version:

https://daneshyari.com/article/300190

Daneshyari.com

https://daneshyari.com/en/article/300190
https://daneshyari.com/article/300190
https://daneshyari.com

