ELSEVIER

Contents lists available at ScienceDirect

Resuscitation

journal homepage: www.elsevier.com/locate/resuscitation

Short communication

Milena Talikowska^{a,*}, Hideo Tohira^a, Paul Bailey^{a,b,c}, Judith Finn^{a,b,d}

^a Prehospital, Resuscitation and Emergency Care Research Unit (PRECRU), School of Nursing, Midwifery and Paramedicine, Curtin University, Bentley, WA, Australia

^b St. John Ambulance, Western Australia, Belmont, WA, Australia

^c Emergency Department, St. John of God Murdoch Hospital, Murdoch, WA, Australia

^d School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia

ARTICLE INFO

Article history: Received 14 September 2015 Received in revised form 30 December 2015 Accepted 6 February 2016

Keywords: Cardiac arrest Cardiopulmonary resuscitation Quality measurement

ABSTRACT

Aim: There is a growing body of evidence for the relationship between CPR quality and survival in cardiac arrest patients. We sought to describe the characteristics of the analysis intervals used across studies. *Methods:* Relevant papers were selected as described in our recent systematic review. From these papers we collected information about (1) the time interval used for analysis; (2) the event that marked the beginning of the analysis interval; and (3) the minimum amount of CPR quality data required for a case to be included in the analysed cohort. We then compared this data across papers.

Results: Twenty-one studies reported on the association between CPR quality and cardiac arrest patient survival. In two thirds of studies data from the start of the resuscitation episode was analysed, in particular the first 5 min. Commencement of the analysis interval was marked by various events including ECG pad placement and first chest compression. Nine studies specified a minimum amount of data that had to have been collected for the individual case to be included in the analysis; most commonly 1 min of data. The use of shorter intervals allowed for inclusion of more cases as it included cases that did not have a complete dataset.

Conclusion: To facilitate comparisons across studies, a standardised definition of the data analysis interval should be developed; one that maximises the amount of cases available without compromising the data's representability of the resuscitation effort.

© 2016 Elsevier Ireland Ltd. All rights reserved.

Introduction

Recently, increased emphasis has been placed on providing high quality cardiopulmonary resuscitation (CPR) to patients in cardiac arrest. Several studies have indicated a significant relationship between survival outcomes and CPR quality parameters such as chest compression depth, ^{1–5} rate⁶ and fraction.^{3,7} However, among studies, heterogeneity exists in how CPR quality parameters are reported for individual patients and then used in analysis. In 2007, Kramer-Johansen et al.⁸ authored recommendations for uniform reporting of measured quality of CPR. These recommendations

* A Spanish translated version of the summary of this article appears as Appendix in the final online version at http://dx.doi.org/10.1016/j.resuscitation.2016.02.008.

* Corresponding author. Prehospital, Resuscitation and Emergency Care Research Unit, School of Nursing, Midwifery and Paramedicine, Curtin University, GPO Box U1987, Perth. WA 6845, Australia.

http://dx.doi.org/10.1016/j.resuscitation.2016.02.008 0300-9572/© 2016 Elsevier Ireland Ltd. All rights reserved. proposed that CPR quality data be collected over the entire resuscitation episode. The start of an episode should coincide with the first therapeutic event after arrival at a cardiac arrest patient, including first recorded chest compression, first defibrillator rhythm analysis, or first defibrillation.⁸ For studies that investigate CPR quality and survival, it was recommended that researchers use discrete measurement windows of 30 s or less for parameters such as compression depth to detect haemodynamic changes associated with compressions.⁸ In terms of undertaking analysis in these types of studies, no recommendations were made in regards to the length of the interval that should be used for analysis, nor the minimum interval length required for inclusion.

In practice, CPR quality is recorded using devices such as the Q-CPRTM (Philips Medical) or the Real CPR Help[®] (ZOLL Medical Corporation). Such devices provide CPR quality summary data for an entire resuscitation episode as well as on an interval-by-interval basis; however there is variation in the proportion of episode data that is used by researchers for statistical analysis. When considering the relationship between CPR quality and survival across existing

E-mail address: milena.talikowska@postgrad.curtin.edu.au (M. Talikowska).

Table 1

Summary of how CPR quality data was analysed across studies.

No.	Study ID	Cases	Interval used for analysis	Event to signify the start	Minimum amount of data
			of CPR quality vs. survival	of the interval	required for inclusion in analysis
1	Abella (2005) ¹⁰	60	First 5 min	Not specified	Not specified
2	Babbs (2008) ¹	695	All available episode data*	Device activation	Not specified
3	Beesems (2013) ¹⁹	199	The first and when available the	Prompt to "Start CPR" or, if	1 cycle
			last complete cycle of CPR	compressions occurred before this,	
				at the first compression	
4	Bohn (2011) ²¹	300	All available episode data*	Not specified	1 min
5	Camacho Leis (2013) ²²	108	All available episode data*	Not specified	Not specified
6	Cheskes (2011) ¹¹	815	Data from the first 3 shocks	ECG pad placement	Data for at least 1 shock
7	Cheskes (2014) ²⁰	2006	Data from the first 3 shocks	Not specified	Data for at least 1 shock
8	Christenson (2009) ⁷	506	Minute interval during which first	Not specified	1 min
			analysis performed and all		
			recorded minute intervals before		
0	11: (2012)14	2000	first analysis		
9	Idris (2012) ¹⁴	3098	First 5 min	Not specified	Not specified
10		10371	FIFST 5 min	First monitored compression	Not specified
11	Kramer-Jonansen (2006)*	284	All available episode data	Not specified	Not specified
12	Miclines $(2012)^{17}$	24	All available episode data	Not specified	Not specified
13	NHES $(2012)^{24}$	30	All available opicede data*	Not specified	Not specified
14	Sileak (2015)-*	383	All available episode data	Not specified	Contained $> 2 \min of$
					time_synchronised CPR quality
					and FTCO ₂ data were included
15	Stiell (2012) ¹⁸	1029	Minute interval during which first	Not specified	1 min ^c
15	Stieli (2012)	1025	analysis performed and all	Not specifica	1 11111
			recorded minute intervals before		
			first analysis		
16	Stiell (2014) ²	9136	First 10 min	ECG pad placement	1 min ^c
17	Sutton (2014) ⁵	87	First 5 min	Not specified	Not specified
18	Sutton (2015) ¹⁶	390	First 10 min	Not specified	1 min
19	Vadeboncoeur (2014) ³	592	Whole resuscitation episode	Not specified	Not specified
20	Vaillancourt (2011) ⁹	2103	First 5 min	Not specified	1 min
21	Wik (2005) ¹⁵	75	First 5 min	Start of first recorded chest	Not specified
				compression	

CPR: cardiopulmonary resuscitation; ECG: electrocardiogram; ETCO₂: end-tidal carbon dioxide.

* Assumed from other information provided within the paper.

Further restrictions: ^a All CPR epochs lasting less than 30 s were excluded from analysis. ^b The initial 5 chest compressions were excluded from analysis. ^c Cases with >5 min of EMS CPR prior to application of AED pads were excluded.

studies, some studies analysed data collected over the entire resuscitation episode³ whereas others only included the first 5 min.^{9,10} Furthermore, there were variations in when the analysis interval began; in some cases it was from when CPR pads were placed on the patient's chest,¹¹ whereas in others it was from the first monitored compression.⁶ There were also variations between studies in the minimum interval length required for analysis.

We aimed to describe the characteristics of the data analysis intervals used by papers that examined the relationship between CPR quality and survival, noting sources of heterogeneity, so as to encourage a uniform approach to data description.

Methods

We reviewed papers that reported the association between CPR quality and cardiac arrest patient survival. The protocol for locating and selecting these papers was documented in our previous systematic review.¹² In all identified papers, CPR quality was recorded using an automated CPR quality measurement device.

From relevant papers we collected information about (1) the time interval used for analysis; (2) the event that marked the beginning of the analysis interval; and (3) the minimum amount of CPR quality data required for a case to be included in the analysed cohort. We then compared this data across papers.

Results

Twenty-one studies reported on the association between CPR quality and cardiac arrest patient survival (see Table 1). In contrast

to our systematic review,¹² we excluded one paper¹³ that did not directly examine this association statistically.

Length of analysis interval

The majority of studies analysed data from the start of the resuscitation period, including six studies^{5,6,9,10,14,15} that analysed data over the first 5 min and two studies^{2,16} that analysed data over the first 10 min. Alternative analysis intervals included: up to the first 500 compressions (not including the first 5 compressions),¹⁷ the minute interval during which the first analysis was performed in addition to all recorded minute intervals before the first analysis,^{7,18} and the first, and where available, the last complete cycle of CPR.¹⁹ Two studies used data from the first three shocks.^{11,20} In six studies,^{1,4,21-24} it was assumed, based on other descriptions in the paper, that the authors analysed all available episode data. In one study³ it was explicitly stated that analysis occurred over the entire episode.

Start of interval

In two studies,^{6,15} the measurement interval commenced from the first recorded compression, in two cases^{2,11} from ECG pad placement, in one study¹ from device activation and in another study¹⁹ either from the prompt to commence CPR or, if compressions were initiated prior to this prompt, from the first compression. In the remaining cases the starting point was not explicitly specified. Download English Version:

https://daneshyari.com/en/article/3007786

Download Persian Version:

https://daneshyari.com/article/3007786

Daneshyari.com