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a b s t r a c t

The fast growth of wind power is in urgent need of more accurate, reliable, and adaptive modeling and
data analysis methods for the characterization and prediction of wind resource and wind power, as well
as reliability evaluation of wind energy conversion systems. Bayesian methods have shown unique
advantages in statistical modeling and data analysis for the quantity of interest with uncertainty and
variability. The adoption of Bayesian methods carries great potentials for various aspects in wind energy
conversion systems such as improving the accuracy and reliability of wind resource estimation and
short-term forecasts. This paper summarizes the basic theories of several Bayesian methods, and
extensively reviews the literature addressing the applications of Bayesian methods in wind energy
conversion systems. Based on the state-of-the-art review, the prospects of Bayesian methods in wind
energy conversion systems are discussed on how to develop new applications and enhance the methods
for existing applications. It is believed that Bayesian methods will be gaining more momentum in wind
energy applications in the near future.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

According to World Wind Energy Association [1], the world
wind power capacity reached 196,630 MW in 2011 after a nearly
exponential growth for 5 years. The top two countries on the chart
are China and the U.S. The installed wind power capacity in the U.S.
increased from 11,575 MW in 2006 to 40,180 MW in 2010. More
astonishing growth took place in China, inwhich the installed wind
power capacity increase from 2599 MW in 2006 to 44,733 MW in
2011. Meanwhile, deep wind energy penetration into electricity
market has been witnessed in many countries. For instance, it
consists of approximately 21% of electricity use in Denmark in
2010 [1], and it is expected to contribute 20% of the total U.S.
electricity supply and 23% of European electricity needs, respec-
tively, by 2030 [2,3].

Modern wind power industry has witnessed huge progress in
the past 30 years due to the R&D efforts, as reviewed in literature
[4,5]. However, due to the uncertainty and intermittence of the
wind resource, it is necessary and important to further improve the
accuracy and reliability of characterization and assessment of the
wind resource. Although numerous studies have been performed
on modeling the wind speed frequency distributions [6] and pre-
dicting the short-term wind speed and wind power [7,8], they still

cannot guarantee satisfactory results in general. Therefore, the
large scale development of wind power is in urgent need of more
accurate, reliable, and adaptive modeling and data analysis
methods for the characterization and assessment of wind resource
and wind power.

Bayesian methods have many unique advantages in statistical
modeling and data analysis. Bayesian modeling techniques, such as
hierarchical Bayesian modeling and Bayesian networks, provide
a natural way to handle missing data, allow combination of data
with domain knowledge, facilitate learning about causal relation-
ships between variables, provide a method for avoiding the over-
fitting of data, predict with good accuracy even with rather small
sample sizes, and can be easily combined with decision analytic
tools [9]. Bayesian estimation and inference on the confidence
intervals of parameters and probability values on hypotheses are
more in line with commonsense interpretations [10]. Bayesian
methods provide a way to formalize the process of learning from
data to update beliefs in accord with recent notions of knowledge
synthesis. It is readily adapted to complex random effects models
that are more difficult to fit using classical methods than using
modern sampling methods. Recently, Bayesian model selection and
averaging [11] have gained increasing popularity in various fields,
demonstrating their advantages over classical methods [12e14].
Therefore, it is appealing to apply Bayesianmethods towind energy
systems.

Bayesian methods are relatively widely adopted in many other
fields, but their applications on wind energy are still in early stage.
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It is meaningful to review the start-of-the-art progress about the
applications of Bayesian methods in wind energy field, and more
importantly, to provide discussion and insights on how to extend
their applications in the near future. The remainder of the paper is
organized as follows. Typical Bayesian methods are briefly intro-
duced in Section 2. In Section 3, the current applications of the
Bayesian methods in the wind energy field are reviewed. In Section
4, a discussion is given on current application efforts and the
potential applications. Finally, conclusive remarks are provided in
Section 5.

2. Bayesian methods

2.1. Bayes’ theorem

In Bayesian methods, the prior, the likelihood, and the posterior
information are represented by probability distributions. A prior is
a probability distribution representing one’s knowledge or belief
about an unknown quantity of interest before any corresponding
data have been observed. A likelihood is a function of the param-
eters of a statistical model, reflecting how likely it is to observe
current data if the parameters of interest would have current value.
The posterior is the probability conditional on the collected data
by combing the prior and the likelihood together via Bayes’
theorem [10].

As expressed in Equation (1), Bayes’ theorem relates two vari-
ables (or events), A and B, based on their prior (or marginal)
probabilities and posterior (or conditional) probabilities,

PðAjBÞ ¼ PðBjAÞPðAÞ
PðBÞ (1)

where P(AjB) is the posterior probability of A conditional on B,
P(BjA) the prior of B conditional on A, and P(B) the non-zero prior
probability of event B, which functions as a normalizing constant.
Thus, the relation is often simplified as PðAjBÞfPðBjAÞPðAÞ.

Bayes’ theorem intuitively describes the way in which the belief
about observing event A is updated by having observed event B. In
Bayesian inference, the prior and the likelihood are mathematically
combined to produce the posterior. The posterior is then used to
determine the probabilities of specified effects. For Bayesian esti-
mation, this theorem is often expressed as

pðqjxÞ ¼ pðqÞpðxjqÞZN
�N

pðqÞpðxjqÞdq
(2)

where p(q) is the probability density of the prior distribution for the
parameter(s) of interest, p(xjq) is the probability density distribu-
tion of the posterior for data x given q, and p(qjx) is the posterior
density of the distribution of q given data x. The normalization
of coefficients ensures that the integral of posterior is always
equal to 1.

2.2. Hierarchical modeling and Bayesian network

The hierarchical modeling idea has recently become one of the
most important topics in modern Bayesian analysis. It allows us to
entertain a much richer class of models that can better capture our
statistical understanding of the problem than a simpler model
could. Especially, with the advance of Markov Chain Monte Carlo
(MCMC) sampling methods, it has become possible to do the
calculations on more complex models, thus rendering the hierar-
chical Bayesian approach more practical.

As mentioned above, given data x and parameter vector q,
a simple Bayesian analysis is to compute a posterior probability
based on a prior pðqÞ and likelihood pðxjqÞ according to Equation
(2). Often, however, the prior pðqÞ is dependent on other parame-
ters that are not mentioned in the likelihood (e.g., V, W). Thus, the
prior pðqÞ must be replaced by a prior pðqjV ;WÞ, and the prior pðVÞ
and pðWÞ on the newly introduced parameters are required,
respectively, resulting in a posterior as follows,

pðq;V ;WjxÞfpðxjqÞpðqjV ;WÞPðVÞpðWÞ (3)

The process may be repeated. For instance, the parameters V, W
may depend in turn on additional parameter Z which will require
its own prior. Eventually the process must terminate, with priors
that do not depend on any other unmentioned parameters.

This algorithm can also be represented by a directed acyclic
graph (DAG), a Bayesian network, as illustrated in Fig. 1(a). In
a Bayesian network, the nodes represent the quantities of interest
(variables) and missing edges encode conditional independencies
between these variables. A Bayesian network is well known for its
ability of providing a compact and simple representation of prob-
abilistic information (uncertainty), allowing the creation of models
associating a large number of variables [15].

A general hierarchical Bayesian network usually consists of two
parts: the structural part and the probabilistic part. The structural
part contains the variables of the network and describes the part-of
relationships and the probabilistic dependencies between them.
The part-of relationships in a structural part may be illustrated
either as nested nodes (see Fig. 1(b)) or as a tree hierarchy (see
Fig. 1(c)). The probabilistic part contains the conditional probability
tables that quantify the links introduced at the structural part [15].

Hierarchical Bayesian Networks are a generalization of standard
Bayesian Networks, where a node in the network may be an
aggregate data type. This allows the random variables of the
network to represent arbitrary structure types. Within a single
node, there may also be links between components, representing
probabilistic dependencies among parts of the structure. Hierar-
chical Bayesian Networks encode conditional probability depen-
dencies in the same way as standard Bayesian Networks. They can
express further knowledge about variable structures and use that
knowledge to build more realistic probabilistic models.

2.3. Bayesian neural network

Bayesian neural network means to adopt Bayesian learning
method for the implementation of a neural network model. As
mentioned previously, Bayes’ theorem reflects the dynamics of
learning and accumulation of the knowledge. The prior distribution
encapsulates the state of our current knowledge before we see any

Fig. 1. A simple hierarchical Bayesian network structure. (a) Standard Bayesian
network; (b) Nested representation; (c) Tree representation.
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