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a b s t r a c t

A clustering approach is presented for short-term prediction of power produced by a wind turbine at low
wind speeds. Increased prediction accuracy of wind power to be produced at future time periods is often
bounded by the prediction model complexity and computational time involved. In this paper, a trade-off
between the two conflicting objectives is addressed. First, a set of the most relevant parameters
(predictors) is selected using the underlying physics and pattern immersed in data. Five scenarios of the
input space are created with the k-means clustering algorithm. The most promising clustering scenario is
applied to produce a model for each clustered subspace. Computational results are compared and the
benefits of clusterespecific (customized) models are discussed. The results show that the prediction
accuracy is improved the input space is clustered and customized prediction models are developed.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Knowing the power to be produced by a wind turbine at future
time horizons is of interest to the rapidly expanding wind industry
[1]. Wind power forecasts are used as input for various tools, e.g.,
management of power dispatch and control of wind turbines [2,3].

The state-of-the-art approaches to wind power forecasting have
been published in [4] with more recent updates included in [5].
Models used for forecasting wind power are categorized as physics-
based models, statistical models, and spatial correlation models
[3,6e10]. Data-mining algorithms offer a promise to conquer the
unresolved gap of handling the dynamic nature of wind [11].

The published literature on data-mining in wind power is
growing, with Neural Networks (NNs) becoming the widely used
algorithm. NN models can be used to estimate power output as
a function of wind turbine parameters (e.g., wind speed, generator
torque) and time delay of the corresponding parameters (e.g.,
power itself, wind speed) [12,13]. Wind speed, relative humidity,
and time were used as input variables to train an NN model in
power prediction applications [14,15]. The recurrent multilayer-
perceptron NN was applied for power prediction in [16]. Long- and
short-term prediction of power using the k-nearest neighbor
(k-NN) algorithmwas presented in [11,12]. Analysis and estimation
of power based on cluster analysis was reported in [17].

This paper is organized in eight sections. Section 2 describes the
data used for this paper. The candidate parameters of interests to

the studied domain are selected using known equations. Section 3
discusses the proposed clustering approach (model customization)
for short-term power prediction. Parameter selection by data-
mining algorithms is presented in Section 4. Section 5 discusses and
compares five scenarios of clustering the input space. Section 6
presents models extracted from data of each clustered subspace.
Comparison between the proposed model and the model extracted
in typical ways is discussed in Section 7. Section 8 concludes the
paper.

2. Data description and parameter selection

Wind turbine data is usually collected by a Supervisory Control
and Data Acquisition (SCADA) system. Though the data sampling
frequency may be relatively high (e.g., 20 Hz), the data is averaged
into time intervals, e.g., 10 s, 30 s, or 10 min, that are suitable for
various applications. The data used in this paper was collected at
10 s intervals (called 10 s data) at a 1.5 MWwind turbine (randomly
selected) for a period of seven days. For the selected wind turbine,
the cut-in speed is 3.5 m/s, the rated speed is 12.5 m/s, and cut-out
speed is 21 m/s. From the view of turbine operations, wind speed in
the range [3.5 m/s,12.5 m/s] is of interest to industry. Thus, the data
with a wind speed lower than 3.5 m/s or higher than 12.5 m/s have
been excluded from analysis in the research reported in this paper.
Data points with a negative power output have been also deleted.
The data from the first five days (approximately 2/3 of all data) was
used to extract models, and the data from the remaining two days
(approximately 1/3 of all data) was used for test and validation
models. The data set used in this research is characterized in Table 1.
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The data available for this research included numerous param-
eters of a wind turbine. Some of these parameters could have
a potential impact on the prediction accuracy of wind power to be
generated at 10 s intervals.

Based on the basic wind power equation [18], five parameters
are selected as candidates, including wind speed v, blade pitch
angle b, generator torque T, and rotor speed ur. Considering the
fact that the system inertia could be significant, the power output
Pa is also included. The air density r and rotor radius R are
regarded here as constants. The initially selected parameters are
listed in Table 2.

Since timedelay is considered ashaving an impacton themodel’s
accuracy, it also considered, and thus further parameter selection is
accomplished with data-mining algorithms (see Section 4).

3. Proposed methodology

The input data (controllable, non-controllable, and performance
parameters) representing the input space undergo parameter
selection and clustering. Based on the data in each cluster, a model
is produced with data-mining algorithms. The number of input
parameters n (dimension) and the number of instancesN define the
input space ISn. For each parameter in the input space, there are
N¼ 30 354 training instances 1and N¼ 15 860 test instances (see
Table 1). Each of the models 1,.,k predicts power output PO(t) at
time t.

The steps of the proposed methodology are discussed next.

3.1. Parameter selection

The five parameters listed in Table 2 partially describe the input
space. To simplify the input space, the same number m of past

states is considered for each of the five parameters. The input space
ISn for the m past states of five parameters listed in Table 2 is
defined by vector (1).

ISn ¼ ½vðt � 1Þ;.; vðt �mÞ; x1ðtÞ;.; x1ðt �mÞ; x2ðtÞ;.; x2
ðt �mÞ; y1ðt � 1Þ;.; y1ðt �mÞ; y2ðt � 1Þ;.; y2ðt �mÞ� (1)

Of all n predictors, the most significant are selected with a NN
algorithm (see Section 4).

3.2. Clustering input space

3.2.1. Clustering training data set
In this section, the training data set is clustered into k subspaces.

Based on parameters selected for clustering, the following five data
processing scenarios are considered:

a) Clustering on wind speed estimated by its one past state
b) Clustering on wind speed estimated by the time series model

c) Clustering on generator torque x2(t)
d) Clustering on generator torque x2(t) and rotor speed y2(t� 1)
e) Clustering on generator torque x2(t), rotor speed y2(t� 1), and

power output y1(t� 1)

The first two scenarios explore the impact of wind speed on
the accuracy of power output predictions at 10 s intervals. As
the wind speed v(t) at future time t is not known, two esti-
mation methods have been applied. The first one (item (a)
above) uses wind speed at one past state v(t� 1), and the
second one is based on the time series model. Prediction of
wind speed with the time series models has been proven to be
accurate (see [19]).

The final three scenarios of clustering the input space originate
in predictors’ importance (see Section 4). The first three most
significant parameter states determined by the data-mining algo-
rithms are the generator torque x2(t), rotor speed y2(t� 1), and
power output y1(t� 1) (see Section 4). All parameters are studied
for impact on clustering the input space.

3.2.2. Clustering the test date set
For the ndimensional space, the center (centroid) of the ith

cluster of the training data is denoted as ½xi1; xi2;.; xin�, where i is the
number of the cluster satisfying 1� i� k. To balance the bias due to
the variability of the input data the values of ½xi1; xi2;.; xin� have
been normalized in the interval [0,1].

Thus, the distance from a normalized instance [z1, normalized,.,
zn, normalized] to the ith cluster centroid of the training data is
defined in (2).

The aim is to find, for each data instance, a cluster with the
minimum distance between the instance and the cluster
centroids. The clustering algorithm of the test data set is shown
in Table 3.

As illustrated in Table 3, Dmin is initially set to 1, and then it is
replaced with a shorter distance found. In this way, each instance
from the test data set is assigned to the closest cluster.

Table 1
Description of the training and test data.

Data set Start time End time Time interval Number of
data points

Training 8/8/07 12:00 AM 8/12/07 12:00 AM 10 s 30 354
Test 8/13/07 12:00 AM 8/15/07 12:00 AM 10 s 15 860

Table 2
List of parameters selected for wind speed estimation.

Parameter type Parameter name Abbreviation Symbol Unit

Non-controllable Wind speed WS v m/s
Controllable Blade pitch angle BPA x1 �

Generator torque GT x2 Nm

Performance Power output PO y1 kW
Rotor speed RS y2 rpm

Table 3
Algorithm for clustering test instances.

Begin
For i¼ 1 to k
Dmin¼ 1

Di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz1;normalized � xi1;normalizedÞ2þ;.;þðzn;normalized � xin;normalizedÞ2

q

If Di�Dmin

Let
Dmin ¼ Di; ½z1;normalized ;.; zn;normalized� ¼ ½zi1;normalized;.; zin;normalized�

Else
Next i
End

Di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
z1;normalized � xi1;normalized

�2þ;.;þ
�
zn;normalized � xi1;normalized

�2r
(2)
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