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Abstract Introduction: Recent studies have shown that pathologically defined subtypes of Alzheimer’s dis-
ease (AD) represent distinctive atrophy patterns and clinical characteristics. We investigated whether
a cortical thickness–based clustering method can reflect such findings.
Methods: Atotal of 77ADsubjects from theAlzheimer’sDiseaseNeuroimaging Initiative 2data setwho
underwent 3-T magnetic resonance imaging, [18F]-fluorodeoxyglucose-positron emission tomography
(PET), [18F]-Florbetapir PET, and cerebrospinal fluid (CSF) tests were enrolled. After clustering based
on cortical thickness, diverse imaging and biofluid biomarkers were compared between these groups.
Results: Three cortical thinning patterns were noted: medial temporal (MT; 19.5%), diffuse (55.8%),
and parietal dominant (P; 24.7%) atrophy subtypes. The P subtype was the youngest and represented
more glucose hypometabolism in the parietal and occipital cortices and marked amyloid-beta accu-
mulation in most brain regions. The MT subtype revealed more glucose hypometabolism in the left
hippocampus and bilateral frontal cortices and less performance in memory tests. CSF test results did
not differ between the groups.
Discussion: Cortical thickness patterns can reflect pathophysiological and clinical changes in AD.
� 2016 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).
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1. Introduction

Aggregations of amyloid-beta (Ab) and tau protein are the
two main pathologic hallmarks of Alzheimer’s disease (AD).
Although the aggregation of Ab is known to precede the tau
pathology inAD, the earlier role of tau aggregation in the path-
ogenesis of AD and aging has been reemphasized [1,2]. The
accumulation of tau has been noted in the transentorhinal
cortices with normal aging and such tau aggregation is
known to accelerate the spread of Ab pathology in the AD
brain [1–3]. Moreover, the accumulation of tau proteins
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correlates very closely with cognitive decline and brain
atrophy including hippocampal atrophy [4,5]. Hence,
defining AD based on the tau pathology in the brain would
enable a better understanding of the clinical implications of
tau accumulation in this disease.

Recently, neuropathologically defined subtypes of AD
have represented distinctive clinical characteristics and brain
structural changes such as (1) typical generalized atrophy
involving medial temporal (MT) lobes; (2) limbic predomi-
nant atrophy; (3) and hippocampus-sparing atrophy [6,7].
Because pathologic assessment cannot be easily applied to
most of AD subjects in vivo, our group recently investigated
whether clustering of AD subjects based on magnetic
resonance imaging (MRI) cortical thickness patterns can
replicate autopsy-based findings. Interestingly, the MRI
cortical thickness pattern–based clustering was comparable
with the autopsy-based classification ofAD in an earlier report
[8]. However, there was no assessment in that previous study
as to whether the new clustering method based on cortical
thickness patterns can also reflect pathophysiological changes
in AD. If so, this would potentially provide additional clinical
information on structural brain magnetic resonance (MR) im-
ages and, thus, further knowledge of the underlying pathogen-
esis as well as prognosis of the disease.

We investigated whether the new cortical thickness–based
clustering methodology could be replicated in a multicenter,
international data set. We also sought to determine whether
this clustering method reflected the pathophysiological status
of AD as assessed by [18F]-fluorodeoxyglucose (FDG)-posi-
tron emission tomography (PET), [18F]-Florbetapir PET, and
cerebrospinal fluid (CSF) Ab and tau protein tests.

2. Methods

2.1. Participants

Data used for the preparation of this article were obtained
from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database (adni.loni.usc.edu). The ADNI is described
in SupplementaryMethods.We selected 89AD subjects from
the ADNI-2 study who had high-resolution 3-T T1-weighted
MRI, baseline FDG-PET, baseline Florbetapir-PET, and
available baseline CSF results. Among these 89 subjects, 12
cases were excluded because of segmentation errors in MRI
cortical thickness analysis and a total of 77 subjects were
included for analyses. For comparison and to obtain represen-
tative MR images of each group, we also used data from 42
subjectswith normal cognition in theADNI-2who underwent
the baseline and 2 year follow-up imaging and baseline CSF
studies and remained normal at 2-year follow-up assessments.

2.2. Image analysis

2.2.1. MRI analysis

2.2.1.1. MRI acquisition
We followed ADNI procedure in our current analysis.

Briefly, we used screening 3-T T1-weighted MRI sequence

with rapid gradient echo (MPRAGE) images with a 1.2-mm-
slice thickness. Subjects who underwent 1.5 T MRI or MRI
sequence with enhanced spoiled gradient were not included
because of greater signal-to-noise ratio or less compatibility
between sequences. All data were downloaded from LONI
(as of October 2014). Additional details regarding data acqui-
sition are available elsewhere (http://www.adni-info.org).

2.2.1.2. Measurements of cortical thickness
The cortical thickness of the initial cohort of 89 AD sub-

jects was measured as described previously [9]. Three-Tesla
T1-weighted MRI images were processed using a standard
Montreal Neurological Institute (MNI) anatomic pipeline
(version 1.1.9; http://wiki.bic.mni.mcgill.ca/index.php/
CIVET). We registered all native volumetric T1 images into
a standardized stereotaxic space using a linear transformation
[10]. An N3 algorithm was used to correct for intensity non-
uniformities using inhomogeneities in the magnetic field
[11]. The corrected volumetric images were then classified
intowhitematter, graymatter (GM), CSF, and background us-
ing an Intensity-Normalized Stereotaxic Environment for
ClassificationofTissues algorithm [12]. The surfaces of the in-
ner and outer cortices were automatically extracted using a
Constrained Laplacian-Based Automated Segmentation with
Proximities algorithm [13]. Finally, the Euclidean distances
between linked vertices on the inner and the outer surface
were calculated for the cortical thickness measurement [14].

2.2.1.3. Cluster analyses
We performed hierarchical agglomerative cluster analysis

using Statistics and Machine Learning Toolbox implemented
in MATLAB version 8.2.0.29 R2013b (MathWorks, Natick,
MA,USA) inwhicheachpatient begins inhis or her owncluster
and at each step the two most “similar” clusters are combined
until the last two clusters are combined into a single cluster
with all patients. We used the whole-brain cortical thickness
for the clustering: a total of 78,570 vertex points (without non-
cortical regions) for each of the 77 AD subjects. To cluster pa-
tients according to the thinning patterns of each cortical region,
rather than a global atrophy, the variations in global atrophy be-
tween patients were compensated for by normalizing the
cortical thickness values from vertices to a mean cortical thick-
ness [15]. The Ward’s clustering linkage method [15,16] was
used to combine pairs of clusters. The clustering begins with
each patient in his or her own cluster (n 5 77, size 1 each).
At each step, the Ward’s method chooses which pair of
clusters to be combined next by merging the pair of clusters
while minimizing the sum of square errors (the two most
similar clusters) from the cluster mean. For instance, n-1
clusters are formed in the first step (one cluster of size 2).
Then, n-2 clusters are formed in the second step (two clusters
of size 2 or one cluster of size 3 including the cluster formed
in step 1). The algorithm continues until all patients are
merged into a single large cluster (size n). Finally, each of the
77 AD patients was placed in their own cluster and then
progressively clustered with others. The cluster analysis
results are shown as a dendrogram (Fig. 1).
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