Contents lists available at ScienceDirect

Soil Dynamics and Earthquake Engineering

journal homepage: www.elsevier.com/locate/soildyn

A linearized approach for the seismic response analysis of flexible cable net structures

Yang Xiang, Yongfeng Luo, Xiaonong Guo*, Zhe Xiong, Zuyan Shen

Department of Building Engineering, Tongji University, Shanghai 200092, PR China

ARTICLE INFO

ABSTRACT

Article history: Received 15 December 2015 Received in revised form 15 May 2016 Accepted 2 June 2016

Keywords: Cable net structure Nonlinear seismic response Equivalent single-degree-of-freedom system Equivalent linearization Non-iterative approach Seismic response spectrum Flexible curtain wall Cable net structures are characterized by significant geometrical nonlinear properties. The linear modal superposition method (LMSM), which ignores the effect of nonlinearity, is believed not suitable for the seismic response analysis of this kind of structures. To conquer the drawback of LMSM, a non-iterative linearization method (NILM) is proposed in this paper. An energy parameter named the "stiffness parameter" is utilized in generating the nonlinear equivalent single degree of freedom (ESDF) systems for the dominant vibration modes of cable nets. The nonlinear stiffness of an ESDF system is simulated by a quadratic function about the equivalent displacement. Based on a stochastic linearization process, the relationship between the equivalent linear stiffness and the displacement response of a modal ESDF system is established. Then the structural responses are computed according to the design response spectra through a non-iterative procedure. Finally, the effectiveness of the proposed NILM is illustrated by a numerical example that carried out on a trapezoid-shaped cable net supported curtain wall structure. It is demonstrated that the proposed NILM, which takes the stiffness hardening effect into consideration, could not only yield better results than the LMSM does, but also exhibit satisfying timesaving property over the nonlinear RHA.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The monolayer cable net facades have been widely used in building structures over the last several decades. These flexible cable net structures mainly consist of pre-tensioned cables and glass panels, as shown in Fig. 1. Because the structural stiffness and the bearing capacity are mainly provided by the cable members, the monolayer cable net systems are characterized by significant geometrical nonlinear behaviors. And this nonlinearity makes it pretty complicated to analyze the structural responses under dynamic excitations, such as seismic actions (Memari et al. [1]) and fluctuating wind pressures. To accurately compute these dynamic responses, a response history integration process is necessarily needed. Consequently, a series of response history analyses (RHA) is involved in either design or evaluation of a flexible cable net structure.

In order to simplify the analysis procedure and, possibly, avoid the time consuming RHA process, notable works have been done on investigating the dynamic properties of the pre-tensioned cable net systems. Kwan [2] provided a simple technique for calculating the initial natural frequencies of cable nets, yet it was also pointed

* Corresponding author. E-mail address: guo-xiao-nong@tongji.edu.cn (X. Guo).

http://dx.doi.org/10.1016/j.soildyn.2016.06.001 0267-7261/© 2016 Elsevier Ltd. All rights reserved. out that the period of a cable net is amplitude dependent. Vassilopoulou and Gantes [3,4] studied the natural frequencies and the corresponding vibration modes of saddle-formed cable networks with either rigid or flexible supports, and reported in details the nonlinear resonance phenomenon of this kind of structure. In investigating the behavior of cable net facades subjected to blast loads, the influence of negative phase loading were particularly discussed by Teich et al. [5]. During the last decade, Feng et al. [6– 9] did a series of work on analyzing the dynamic responses of cable net structures. Firstly, Feng et al. [6] carried out static experiments and numerical simulations to study the working mechanism of monolayer cable net supported glass curtain walls. Besides, based on the continuous membrane theory, Feng et al. [7] established an equivalent single degree of freedom (ESDF) system and the corresponding nonlinear vibration governing equation of a cable net, and calculated its wind induced linear response by using a harmonic balance method. Meanwhile, Feng et al. [8] did dynamic model tests, as well as finite element analyses to learn the dynamic performance of cable net facades which considers the effects of the glass panels. Furthermore, according to the nonlinear ESDF system, Feng et al. [9] proposed the nonlinear response spectra for flexible cable net structures under four groups of site conditions.

The research done by Wang et al. [10], Shi et al. [11], Wang and Zhao [12], together with the aforementioned Feng et al.'s work [6–

 c_n

Nomenclati	ure
------------	-----

		$a_g(t)$	ground acceleration
RHA	response history analysis	$\Delta \chi_{ni}$	load factor increment
ESDF	equivalent single degree of freedom	k	stiffness
LDC	load-displacement curve	d	displacement
SDF	single degree of freedom	a_0	coefficient in the <i>k</i> - <i>d</i> relationship
k^*	overall structural stiffness index	b_0	coefficient in the <i>k</i> - <i>d</i> relationship
fu	unit force	F(d)	restoring force
W _u	work done by the unit force	$F_e(d)$	linear restoring force
d.,	displacement accordant to f_{ij}	k _e	equivalent stiffness
δ_{μ}	flexibility of the system	SGP	stationary Gaussian process
k,	system stiffness corresponding to w_{μ}	d(t)	structural response process
MDF	multi-degree of freedom	$\Delta F[d]$	deviation process between $F(d)$ and $F_e(d)$
ΔP_i	load increment vector in the <i>i</i> th load step	PDF	probability density function
Δv_i	displacement increment vector caused by ΔP_i	p(d)	PDF of the $d(t)$ process
ΔP_{ui}	unitized vector corresponding to ΔP_i	σ_d	standard deviation of $d(t)$
Δv_{ui}	displacement increment vector caused by ΔP_{m}	a_{resp}	seismic acceleration response
$\ \Delta P_i\ $	norm of ΔP_i	T	vibrating period
Δw_{ui}	work done by ΔP_{m}	d_{resp}	seismic displacement response
k_i^*	equivalent structural stiffness of the <i>i</i> th load step	$a_{reap}^{T}(\omega)$	transformed response spectrum
Xn	the <i>n</i> th modal displacement vector	a_{reap}^{TT}	<i>m-k</i> -based design response spectrum
Υni	static load factor of the <i>i</i> th load step	NILM	non-iterative linearized method
F _{ni}	force vector of the <i>i</i> th load step	LMSM	linear modal superposition method
SLF	static load factor	Α	cross-section area of cables
k_{ni}^{*}	stiffness of the <i>n</i> th mode in the <i>i</i> th load step	Ε	Young-modulus
m_n^*	equivalent mass of the <i>n</i> th modal ESDF system	ε	initial strain
T_n	vibrating period of the <i>n</i> th mode	т	mass on the cable net façade model
ω_n	circular frequency of the <i>n</i> th mode	ξ_n	damping ratio of the <i>n</i> th mode
ξ_n	damping ratio of the <i>n</i> th mode	EMF	effective mass factor
k_{n0}^*	initial equivalent stiffness of the <i>n</i> th ESDF system	MPF	modal participate factor
$F_{ni,i}$	equivalent force on the <i>j</i> th node in the <i>i</i> th load step	PGA	peak ground acceleration
$X_{n,i}$	the <i>j</i> th element of X_n	k_e^{N}	equivalent stiffness obtained by NILM
α_{ni}	acceleration response of the <i>n</i> th mode	k_e^{L}	equivalent stiffness obtained by LMSM
mi	mass of the <i>j</i> th node	d	overall structural displacement vector
$\vec{\Gamma_n}$	modal participate factor of the <i>n</i> th mode	$\varepsilon_{63}^{\text{NILM}}$	error of node 63 displacement of NILM
F_{ni}^{*}	equivalent seismic action on m_n^*	$\varepsilon_{\scriptscriptstyle Fp}{}^{\scriptscriptstyle m NILM}$	error of cable force of NILM
X_n^*	equivalent modal displacement	d_{63}^{NILM}	node 63 displacement computed by NILM
ΔF_{ni}^{*}	force increment during the <i>i</i> th load step	d_{63}^{RHA}	node 63 displacement computed by RHA
Δd_{ni}^{*}	equivalent displacement increment	F_p^{NILM}	cable force computed by NILM
d_{ni}^{*}	equivalent displacement	F_p^{RHA}	cable force computed by RHA
d _n	displacement vector due to the <i>n</i> th mode	ε_{63}^{LMSM}	error of node 63 displacement of LMSM
a_n^*	acceleration of the <i>n</i> th modal ESDF system	ε_{Fp}^{LMSM}	error of cable force of LMSM
v_n^*	velocity of the <i>n</i> th modal ESDF system	d_{63}^{LMSM}	node 63 displacement computed by LMS
$F_n^{n^*}(d)$	restoring force of the <i>n</i> th modal ESDF system	F_p^{LMSM}	cable force computed by LMSM
1 (3)	<u> </u>	4	

ctural displacement vector de 63 displacement of NILM ble force of NILM splacement computed by NILM splacement computed by RHA computed by NILM computed by RHA de 63 displacement of LMSM ble force of LMSM splacement computed by LMSM computed by LMSM For those cable net structures with irregular boundary shapes, the nonlinear ESDF systems, which represent the mechanical properties of the overall structures, can hardly be established according to the aforementioned approaches, as their two basic assumptions are not applicative anymore. One of them is the sinusoidal curved deformation assumption, and the other is the uniform distribution of pretension and mass assumption. For instance, in designing of the cable net curtain wall of the Beijing New Poly Plaza, (Yang et al. [13]) the structural dynamic properties and responses can only be obtained by a thoroughly executed RHA process, just because the elevation of the curtain wall is "Lshaped". Besides of the geometrical topology limitation exists in the

viscous damping coefficient of the *n*th mode

boundary shapes of cable net structures, another shortcoming of the aforementioned nonlinear approaches is that the amplitude dependent nonlinear stiffness of the ESDF system is not satisfyingly calculated. Feng et al. [14] proposed an applicative approach for nonlinear wind-resistance design of cable net systems, which

system is pretty essential in predicting the dynamic responses of the cable net systems. Yet all of the nonlinear ESDF systems in use are established based on a continuous theory, in which the deformed shape of a cable net facade is simulated by a sinusoidal curved surface and the boundary of the cable net model is assumed to be rectangular, moreover, the cable pretensions and nodal mass are considered as uniformly distributed. Taking the typical Feng et al.'s approach [7,9] for example, they assume the fundamental mode dominates the vibration of the cable net structure as shown in Fig. 2, and express the deformation pattern of the overall system as a symmetric function:

9], all demonstrate that the role played by the nonlinear ESDF

$$\varphi_{1}(x, z) = \sin\left(\pi(x/L_{x})\right)\sin\left(\pi(z/L_{z})\right)$$
(1)

where $\varphi_1(x, z)$ is the out-of-plane displacement of the cable net at position (x, z), while x and z are the horizontal and vertical location, respectively. Based on this continuous assumption, the vibration equation of the cable net could be derived.

Download English Version:

https://daneshyari.com/en/article/303840

Download Persian Version:

https://daneshyari.com/article/303840

Daneshyari.com