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a b s t r a c t

This paper presents an efficient numerical methodology in probabilistically solving the governing partial
differential equation of solid mechanics with uncertainties in both the material parameter and forcing
function in the time domain using the stochastic Galerkin approach. The methodology hypothesizes the
input forcing function and the elastic modulus of the solid to be a nonstationary random process and a
heterogeneous random field, respectively, and efficiently represents them in terms of multidimensional
Hermite polynomial chaos – orthogonal and uncorrelated polynomials of zero-mean, unit variance
Gaussian random variables – by taking advantage of the optimality of the Kosambi-Karhunen-Loève
theorem. The methodology allows for any non-Gaussian marginal distributions and any arbitrary cor-
relation structures for the input process and field. The solution random processes (displacement, velocity,
and acceleration) are also represented in terms of multidimensional Hermite polynomial chaos expan-
sions whose coefficients at each time step are estimated by applying a stochastic Galerkin projectionwith
the time integration performed via the Newmark's method. The methodology is illustrated, keeping the
geotechnical site response analysis in mind, with fully probabilistic, time-domain propagations of bed-
rock motions through an elastic soil deposit in one-dimension, and is verified using the Monte Carlo
method. The effects of input uncertainty parameters of the soil modulus and bedrock motion on the
simulated surface motion are also quantified through a parametric sensitivity study.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Presence of inevitable uncertainties and the need to account for
them explicitly in our predictions have long been recognized by
the earthquake engineering community. Pioneering works by late
Professor C. Allin Cornell during late 1960s [11] and push by the
Pacific Earthquake Engineering Research Center (PEER) during
early 2000s [12,47] saw the development of performance-based
design framework to account for those uncertainties in our design
philosophy. However, numerical simulations of the behavior of
solids and structures under seismic loading – which are increas-
ingly being used to feed the performance-based design framework
– still remain largely deterministic, amid the presence of huge
uncertainties in the systems. This is mainly due to the issue of
computational tractability of the Monte Carlo approach [46] in
solving the governing partial differential equation (PDE) of solid
mechanics with uncertain operators/coefficients and uncertain
forcing function.

Among alternate approaches for solving uncertain PDEs, there
exists analytical technique where the only uncertain parameters
are in the external forcing functions. For such a PDE, the prob-
ability density function (PDF) of the solution variable satisfies a
Fokker-Planck-Kolmogorov (FPK) equation [33,56]. Mathematical
tools, however, are not that well developed for PDEs with opera-
tors/coefficients uncertainty. Exact solution to problems with
stochastic operators was attempted by Hopf [28], using the char-
acteristic functional approach. Later, Lee [38] applied the metho-
dology to the problem of wave propagation in random medium
and derived an FPK equation, satisfied by the characteristic func-
tional of the random wave field. This characteristic functional
approach, though elegant, is not completely rigorous and very
difficult to extend in solving realistic problems with irregular
geometries and boundaries. The difficulty in analytical solution led
to development of approximate techniques. Among the early ap-
proximate approaches, the perturbation technique [9] is the most
common. It is, however, limited to systems with small un-
certainties in model parameters. It also suffers from the closure
requirement – higher order statistical moments are needed to
compute the lower order statistical moments. Frisch [19] provided
a very thorough mathematical review of the early analytical and
approximate methods in relation to the theory of (mostly acoustic
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and electromagnetic) wave propagation in random media. Early
works related to seismic wave propagation through random geo-
logic media also have mostly relied on the perturbation technique
[59,42,52,64]. A review of early developments in the field of sto-
chastic soil dynamics was compiled by Manolis [41].

In recent years, with the availability of faster computers, large
scale probabilistic simulations are being attempted in other fields
of science and engineering using advanced numerical approaches.
Among these approaches, the stochastic collocation and the sto-
chastic Galerkin approaches are more common. Stochastic collo-
cation approaches [4,43,61,63,7] can be viewed as a Monte Carlo
type sampling technique, with the exception that, instead of at
random, the sampling points are selected following some kind of
numerical quadrature schemes which are used to estimate the
statistical moments of the solution variable. These approaches are
non-intrusive approaches as they do not require any modifications
to the underlying deterministic code; the stochastic collocation
scheme just acts as a wrapper on the deterministic code. Sto-
chastic Galerkin approaches [14,24,44,60,62,7], on the other hand,
are, in general, intrusive approaches in the sense that they require
modifications to the deterministic code; see Refs. [1,27] regarding
non-intrusive stochastic Galerkin approaches. Intrusive stochastic
Galerkin approaches usually represent the unknown solution
variable using some type of finite series expansions (mostly
spectral, e.g., polynomial chaos (PC) expansion [58]) and then
employ a Galerkin technique to minimize the errors of finite re-
presentation which result in a system of coupled equations. While
there is no unanimous agreement in the research community on
which approach is better for solving a given problem, it is gen-
erally accepted that stochastic Galerkin approaches are more ef-
ficient as their accuracies are optimal [60,16,6,27]. In this context,
it is important to mention that, depending upon the size of the
problem, the stochastic Galerkin method may require inversion of
an extremely large matrix. However, the matrix is usually very
sparse and has special block properties which are typically
exploited for a faster solution [22,26]. Moreover, some studies
[40,45] also have demonstrated that solution of such large coupled
system of equations may also be advantageous over independently
solving many smaller systems of equations (as in the case of the
stochastic collocation method) since information on convergence
behavior from one block to another can be transmitted during the
solution process, resulting in speed up of computation.

In the field of solid mechanics, stochastic Galerkin approaches
are so far employed mainly to solve static problems – both linear
(elastic) and nonlinear (elastic-plastic as well as geometric) – with
uncertain material parameters [21,23,2,26,55,3,31]. Solutions of
dynamic problems are also attempted, but mostly in the frequency
domain [24,25], thereby restricting the use of the algorithms only
to linear problems. Kundu and Adhikari [36], very recently, have
presented a time domain formulation of a stochastic Galerkin
scheme for application in the field of structural dynamics. They,
however, have considered uncertainty only in the material para-
meter – hypothesizing it to be a Gaussian random field while as-
suming the forcing to be a deterministic function.

We present a time-domain stochastic finite element formula-
tion, based on an intrusive stochastic Galerkin approach, for solving
the governing PDE of solid mechanics with uncertainty in both
material parameter(s) and forcing function. Moreover, our for-
mulation allows for any arbitrary non-Gaussian marginal distribu-
tions and any arbitrary heterogeneous/nonstationary correlation
structures for the material parameter random field and forcing
random process. Conventional approaches for discretizations of
input random fields and processes within a stochastic Galerkin
scheme typically rely on Kosambi-Karhunen-Loève (KKL) expansion
[34,32,39] to represent the input random field/process into an op-
timal number of orthogonal random variables. For Gaussian random

fields/processes, the resulting random variables are also un-
correlated (independent), which is a very desirable property as it
significantly reduces the overall computational effort. For non-
Gaussian random fields/processes, however, the KKL expansion
yields correlated random variables which need special treatment,
resulting in additional computational burden. Our formulation uses
a combination of PC and KKL expansions [54] to efficiently dis-
cretize any arbitrary non-Gaussian input random fields/processes
directly into a finite number of orthogonal and independent ran-
dom variables, thereby simplifying the solution process.

The salient features of the formulation are highlighted through
two example simulations which are designed keeping the geo-
technical site response analysis in mind. Both examples involve
one-dimensional propagation of bedrock motion (shear wave)
through an elastic soil deposit. While the first example assumes
the only uncertainty to be in the soil parameter (shear modulus),
the second example considers uncertainties in both the soil
parameter and bedrock motion. The simulation results are pre-
sented in terms of the marginal mean, marginal standard devia-
tion, and marginal PDF of the surface motion time histories. A
parametric study is also performed to quantify the effect of the
input uncertainty parameters of the soil modulus and bedrock
motion on the simulated surface motion.

2. Formulation of dynamic time-domain stochastic finite ele-
ment method

The governing equations for a three-dimensional elastic solid in
the Cartesian coordinate system are:
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where s, ϵ, D, ρ, b, u, and ü are the stress, strain, material constitutive
parameter, material density, body force, displacement, and accel-
eration, respectively. Neglecting the body force and employing the
Galerkin weak formulation of deterministic, linear, dynamic finite
elements [30], the above equations can be written as:
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where Nm is the finite element shape function, while ∑e denotes the
assembly procedure over all finite elements of the discretized do-
main,Ω and fm(t) incorporates the various elemental contributions to
the global force vector.

We will next assume the material constitutive parameter, D(x),
and the forcing function, fm(t), to be a heterogeneous random field
and a non-stationary random process, respectively and represent
them in terms of multidimensional, Hermite PC expansions with
known coefficients. As a result, the nodal displacement, un(t), and
nodal acceleration, ¨ ( )u tn , will also become random processes. They
will also be represented using multidimensional, Hermite PC ex-
pansions but with unknown coefficients which will be computed
using a stochastic Galerkin approach.
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