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a b s t r a c t

For the seismic analysis of complex or nonlinear extended structures, it is useful to generate a set of
properly correlated earthquake accelerograms that are consistent with a specified seismic hazard. A new
simulation approach is presented in this paper for the generation of ensembles of spatially correlated
accelerograms such that the simulated motions are consistent with (i) a parent accelerogram in the sense
of temporal variations in frequency content, (ii) a design spectrum in the mean sense, and (iii) with a
given instantaneous coherency structure. The formulation is based on the extension of stochastic de-
composition technique to wavelet domain via the method of spectral factorization. A complex variant of
the modified Littlewood-Paley wavelet function is proposed for the wavelet-based representation of
earthquake accelerograms, such that this explicitly brings out the phase information of the signal, be-
sides being able to decompose it into component time-histories having energy in non-overlapping fre-
quency bands. The proposed approach is illustrated by generating ensembles of accelerograms at four
stations.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The primary concern in the analysis and design of structures for
the effects of strong earthquakes is the proper definition and re-
presentation of the design ground motion. Among different ap-
proaches used to this end, those via response spectrum or power
spectral density function (PSDF) are most common. However, in
several applications, such as performance evaluation of mathe-
matical models of structures for design level motions, experi-
mental verification of new design concepts, and statistical analyses
of complex and nonlinear structures, it is required to have a time-
description of the desired ground motion. In most cases, the
available recorded ground motions may not meet the necessary
design specifications for a given site. Therefore, there remains a
need for the simulation of artificial ground motions compatible
with the design requirements.

For the analyses of spatially extended structures, such as long-
span bridges, pipelines or even a simple building system with raft
foundation, it is required to account for possible variations in the
earthquake ground motion at different points in space. Spatial
variability in seismic ground motions can result from a number of
causes, such as, wave passage effect, incoherence effect, extended
source effect, attenuation effect etc. The spatial variability of
ground motions has been estimated and modeled stochastically by

using the strong motions recorded at dense instrument arrays.
Ground motions at different stations are typically considered to be
the realizations of space-time random fields. Spatial variability is
characterized by the coherency function, which is defined for any
two homogeneous random processes in terms of their smoothed
cross-PSDF and individual PSDFs. Based on the regression analyses
of the data available from the dense instrument arrays (SMART-1
array, LSST array, etc.), a number of empirical and semi-empirical
models have been proposed for the coherency function [1–13].

Generation of spatially correlated accelerograms has been at-
tempted by several researchers. The techniques used for this
purpose include spectral factorization [7,14–17], covariance matrix
decomposition [18], auto-regressive moving average (ARMA) ap-
proximation [19], sinusoid superposition [20,21], fast Fourier
transform and digital filtering-based methods [22,23], and condi-
tional simulation [24–27]. The main objective in these simulation
schemes was that the statistical properties of the simulated mo-
tions matched with those of the target random field. Some of these
schemes have used the method of stochastic decomposition sug-
gested by Shinozuka [28]. Hao et al. [7] generated a set of corre-
lated time histories by using the summation of trigonometric
series. Li and Kareem [22] used time-dependent weighing func-
tions in the stochastic decomposition, while the target ground
motion characteristics were specified in terms of an evolutionary
spectral matrix. Shrikhande and Gupta [17] generated spatially
correlated time histories by using the nonstationary characteristics
of a given accelerogram. Zerva [29] has reviewed various schemes
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of simulation of ground motions in detail.
In most of the above simulation procedures, except for those

proposed by Li and Kareem [22] and Shrikhande and Gupta [17],
generated time histories were modulated with the help of a de-
terministic envelope function. However, the envelope function and
phase spectrum of a time-history are known to be closely related
[30,31], and therefore, such modulation may change the phase
properties arbitrarily, thus disturbing the coherency structure.
Also, it is unrealistic to model a complex phenomenon like
earthquake ground motion via a deterministic modulating func-
tion. The scheme proposed by Shrikhande and Gupta [17] in-
corporates nonstationarity in the simulation procedure itself by
using the phase and duration spectra of a recorded time-history,
thus requiring no post-processing of the simulated motions and
keeping the coherency structure intact. However, this scheme does
not account for temporal variations in the coherency structure.
Also, the energy distributions in the target spectrum and the
parent accelerogram need to be “not too different”.

There have been several attempts in the recent years that have
focused on simulating more realistic spatially correlated accel-
erograms. Bi and Hao [32] approximately simulated the spatially
varying ground motions at an uneven site with nonuniform soil
conditions. Konakli and Der Kiureghian [33] simulated nonsta-
tionary ground motions considering the effects of incoherence,
wave passage and differential site response. Cacciola and Deodatis
[34] illustrated the simulation of ground motions at stations with
different soil conditions and separated by 30–50 m of distance.
Zhang et al. [35] simulated tri-directional nonstationary accel-
erograms at varying site conditions by considering power spectra
at the bed rock and the site amplification of P-, SV- and SH-waves.
In a more recent publication, Shields [36] simulated spectrum-
compatible, uniformly modulated nonstationary accelerograms by
upgrading the evolutionary power spectral density function with
random pulse-like perturbations.

Considering that nonstationarity is directly linked to temporal
variations in the characteristics of a signal, a time-frequency
transformation tool is needed to simulate realistic accelerograms.
For example, Wen and Gu [37] simulated nonstationary processes
based on Hilbert spectra. The development of wavelet transform
technique has however made it possible to represent the temporal
variations in the frequency content of a signal more elegantly. The
wavelet transform technique is more versatile than the other time-
frequency localizing techniques, like Gabor transform, short-time
Fourier transform, etc., due to its flexible time-frequency win-
dowing feature [38]. Besides several important engineering ap-
plications [39–45], this technique has already been used by [46,47]
for the characterization of design ground motions. Zeldin and
Spanos [48] synthesized random fields using wavelets. Spanos and
Failla [49] and Huang and Chen [50] estimated the evolutionary
spectra using wavelet transforms. Iyama and Kuwamura [51] and
Gurley and Kareem [52] simulated ground motions using wavelet
transforms. Cecini and Palmeri [53] and Giaralis and Spanos [54]
simulated spectrum-compatible accelerograms using harmonic
wavelets. Huang [55] simulated nonlinear spatially variable
ground motions using wavelets and spectral representation
method.

In this study based on the thesis of the first author [56], a
wavelet-based procedure is formulated for simulating the en-
sembles of spatially correlated accelerograms, such that those are
compatible with a given response spectrum and an assumed co-
herency model. An analytic function is considered as the mother
wavelet function and the popular stochastic decomposition tech-
nique is extended to the wavelet domain for this purpose. The
proposed approach is illustrated by generating a set of ensembles
of correlated accelerograms for the stations 100, 200 and 300 m
apart.

2. Wavelet transform

2.1. Brief review

If ( )f t is a function belonging to ( )L R2 space, the continuous
wavelet transformation of ( )f t with respect to a mother wavelet
function ψ ( )t is defined as [38,57]
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where a and b are real-valued scale and shift parameters, re-
spectively, and the asterisk denotes complex conjugation. The
transient nature and finite energy content of the earthquake sig-
nals make it possible to have their wavelet domain representation.
It is possible to reconstruct the original signal ( )f t from its wavelet
coefficients ( )ψW f a b, as
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denoting the Fourier transform of ψ ( )t .

2.2. Mother wavelet

The choice of mother wavelet depends on the type of appli-
cation and the type of function being analyzed. The most common
transformation technique, that is Fourier transformation, uses a
complex basis function, ωei t . This function consists of a real (cosine)
function added in quadrature to its Hilbert transform (i.e., sine
function). Due to this, ωei t belongs to a special class of complex
functions, called analytic functions, which have non-zero spectra
only for positive frequencies [58]. The use of an analytic function
as the basis function entails it to reveal the phase information of a
signal, and therefore, Fourier transform is considered to be useful
for deriving the phase properties of stationary signals. Unlike the
Fourier transformation, a wavelet transformation uses a time-lo-
calized oscillatory function as the analyzing or mother wavelet,
which can be either real or complex. Both real and complex mo-
ther wavelets perform a complete and reversible transformation of
a signal from time domain to wavelet domain with no information
loss, but in the case of real wavelets, the phase-related information
of the signal cannot be separated out from the transformed signal.
It is therefore necessary that whenever instantaneous phase
properties of a signal are explicitly required, a complex mother
wavelet, which is also an analytic function, is used [58].

Another important characteristic of the mother wavelet func-
tion is its resolution. In this respect, the mother wavelet proposed
by Basu and Gupta [41] is well suited to deal with earthquake
signals. This function is basically a modified version of the Little-
wood-Paley (L-P) wavelet function, with improved resolution in
frequency domain. The advantage of the L-P basis function is that
its Fourier spectrum is constant over a specific band of frequencies
and zero for all other frequencies. However, with the original
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