Contents lists available at ScienceDirect



## Soil Dynamics and Earthquake Engineering

journal homepage: www.elsevier.com/locate/soildyn



# A simplified Nonlinear Sway-Rocking model for evaluation of seismic response of structures on shallow foundations



### Yang Lu<sup>a,\*</sup>, Alec M. Marshall<sup>a</sup>, Iman Hajirasouliha<sup>b</sup>

<sup>a</sup> Department of Civil Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, UK
<sup>b</sup> Department of Civil & Structural Engineering, University of Sheffield, Western Bank, Sheffield S10 2TN, UK

#### ARTICLE INFO

Article history: Received 26 June 2015 Received in revised form 4 November 2015 Accepted 7 November 2015 Available online 4 December 2015

Keywords: Soil-structure interaction Simplified model Nonlinear analysis Soil non-homogeneity Coupled sway-rocking response

#### ABSTRACT

This paper presents a simplified Nonlinear Sway-Rocking model as a preliminary design tool for seismic soil-structure interaction analysis. The proposed model is intended to capture the nonlinear load-displacement response of shallow foundations during strong earthquake events where foundation bearing capacity is fully mobilised. Emphasis is given to heavily-loaded structures resting on a saturated clay half-space. The variation of soil stiffness and strength with depth, referred to as soil non-homo-geneity, is considered in the model. Although independent springs are utilised for each of the swaying and rocking motions, coupling between these motions is taken into account by expressing the load-displacement relations as functions of the factor of safety against vertical bearing capacity failure (FSv) and the moment-to-shear ratio (M/H). The simplified model has been calibrated and validated against results from a series of static push-over and dynamic analyses performed using a more rigorous finite-difference numerical model. Despite some limitations of the current implementation, the concept of this model gives engineers more degrees of freedom in defining their own model components, providing a good balance between simplicity, flexibility and accuracy.

© 2015 Elsevier Ltd. All rights reserved.

#### 1. Introduction

During the past decade, the interest in the topic of seismic Soil-Structure Interaction (SSI) has seen a gradual shift from the superstructure to the foundation soil. Recent research studies on SSI have shown reduced seismic ductility demands of structures due to nonlinearity that arises mainly from the mobilisation of the ultimate capacity and the uplifting response of shallow foundations. These studies have mainly focused on stiff slender structures on small foundations, such as shear walls [1], bridge piers [2,3], and framed structures [4,5] supported by spread footings. It has been found that the lifting off of one side of the footing not only results in geometric nonlinearity at the soil-footing interface, but causes yielding of soil on the other side, which in turn increases the uplift. Allowing mobilisation of the foundation bearing capacity through soil yielding and foundation uplifting limits the maximum loads that can act on the superstructure, and also leads to a considerable amount of energy dissipation due to the hysteretic damping in the soil [6].

On the other hand, structures supported on spread footings may experience unexpectedly high differential settlements during

\* Corresponding author. E-mail address: evxyl7@nottingham.ac.uk (Y. Lu).

http://dx.doi.org/10.1016/j.soildyn.2015.11.002 0267-7261/© 2015 Elsevier Ltd. All rights reserved. strong shaking. This phenomenon, induced by either heavy structural loads that are unevenly distributed across the footing, poor soil conditions, or the combination of both, can lead to failure of structural components and hence, non-repairable damage or collapse of structures [7]. Mat (or Raft) foundations, in these cases, are more suitable to spread the loads from the structure to the ground. Unlike the shear walls or bridge piers, structures supported on mat foundations are usually designed with a medium slenderness ratio. This leads to a strong interaction between the sway and rocking motions of the foundation when subjected to the horizontal component of strong ground motion.

It has been shown that nonlinearities in the soil (corresponding to large strains) and at the soil-foundation interface are almost unavoidable in strong seismic events [8]. Performance-based seismic design methodology embraces these nonlinearities, provided that the responses of both structural and geotechnical components satisfy the performance targets. The role of nonlinear seismic soil-structure interaction on dynamic response of buildings has recently been emphasised by Pecker et al. [9] and Gazetas [10]. In this context, it is important to develop reliable design tools that provide sufficient accuracy to assess the seismic performance of SSI while maintaining simplicity so as to be easily understood and accepted by engineers.

In recent years, the concept of a macro-element, which simplifies the dynamic interaction between soil and foundation by

| $M_u$ Foundation moment capacity under pure rocking $A$ Area of the mat foundationm $C$ Shape parameter of the backbone curve used in<br>NSR modelN $C_r$ Initial elastic range of the backbone curve used in<br>NSR model $N_{cM}$ $D$ Diameter of the mat foundation $S_u$ $B_r$ Soil undrained shear strengthSoil undrained shear strength at ground level $F_r$ Bearing capacity of foundation under combined<br>loading $S_u$ $F_c$ Bearing capacity of foundation under combined<br>loading $U_e$ $F_r$ Factor of safety of foundation against pure static<br>vertical load $U_p$ $F_w$ Force when first entering the plastic cycle $U_p$ $F_w$ Foundation shear force $V_u$ $F_v$ Factor of safety of foundation against pure static<br>vertical load $V_w$ $F_r$ Foundation shear capacity under pure vertical load $V_u$ $G_o$ Soil shear modulus at ground level $V_u$ $H_v$ Foundation shear capacity under combined loading<br>$\mu_w$ $\rho$ $M_{av}$ Foundation shear capacity under pure sliding<br>$a_h$ $\alpha_h$ $M_{eff}$ Effective height of the superstructure<br>$rem in foundation stiffness\alpha_rK_hSult modulus\chiInfluence factor for foundation stiffness and strength profile ofthe foundation stiffness of the interfacek_r\rhoN_{av}Normal stiffness of the interfacek_r\muK_rFoundation Rocking stiffnessk_r\mu_rK_rFound$                                                                                                                                                                                                                                                                                                                                                                             | Nomenclature        |                                                                                                          | $M_c$            | Foundation moment capacity under combined loading        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------------------------------------------------------------------------------------|------------------|----------------------------------------------------------|
| AArea of the mat foundationIntInterspectivecShape parameter of the backbone curve used in<br>NSR modelNumber of storeysCrInitial elastic range of the backbone curve used in<br>NSR modelNumber of storeysDDiameter of the mat foundation $s_u$ Soil undrained shear strengthDDiameter of the mat foundation material $u$<br>Foundation strength at ground level $F_c$ Young's modulus of the foundation under combined<br>loadingFoundation displacement $F_c$ Bearing capacity of foundation under combined<br>loading $u_c$ Elastic component of foundation displacement $F_w$ Force when first entering the plastic cycle $u_p$ Plastic component of foundation displacement $F_w$ Factor of safety of foundation against pure static<br>vertical load $v_p$ Plastic component of foundation displacement at the<br>start of the current plastic loading cycle $G$ Soil shear modulus $V$ Foundation bear capacity under pure sliding<br>$a_h$ $a_h$ $H_w$ Foundation shear capacity under pure sliding<br>$\mu_w$ $a_r$ Stiffness loss factor for foundation swaying response $h_{eff}$ Effective height of the superstructure<br>$h_{in}$ $\alpha_r$ Stiffness loss factor for foundation stiffness and strength profile of<br>$h_{eff}$ $h_w$ Foundation swaying stiffness<br>$h_w$ $\chi_w$ Influence factor for foundation stiffness taking into<br>account soil heterogeneity<br>$\lambda_w$ $k_h$ Normal stiffness of the interface<br>$k_r$ $\nu_f$ Poisson's ratio of the foundation material<br>$\rho$ $k_h$ <th></th> <th></th> <th>M<sub>u</sub></th> <th>Nase of the superstructure</th>                                                                                                                                 |                     |                                                                                                          | M <sub>u</sub>   | Nase of the superstructure                               |
| cShape parameter of the backbone curve used in<br>NSR modelNNumber of subsyssCrInitial elastic range of the backbone curve used in<br>NSR model $R_{ev}$ Foundation ultimate moment capacity coefficient<br>Radius of the mat foundationDDiameter of the mat foundation $s_u$ Soil undrained shear strength at ground level<br>Foundation sliding displacementFrForce at the start of the current plastic loading cycle $u$ Foundation displacement at which 50% of capa-<br>city is mobilised $F_e$ Bearing capacity of foundation under combined<br>loading $u_p$ Plastic component of foundation displacement $F_w$ Force when first entering the plastic cycle $u_p$ Plastic component of foundation displacement $F_w$ Factor of safety of foundation against pure static<br>vertical load $V_p$ Plastic component of foundation displacement at the<br>start of the current plastic loading cycleGSoil shear modulus $V$ Foundation setric pacity under combined loading<br>$\mu_w$ $\mu$ He<br>Foundation shear capacity under pure sliding<br>$h_{eff}$ $\alpha_h$ Stiffness loss factor for foundation swaying response<br>$\alpha_r$ $h_i$ Height of superstructure<br>foundation stiffness and strength profile of<br>theor $\chi$ Mass density $K_m$ Normal stiffness of the interface<br>$k_r$ $\nu_f$ Poinson's ratio of the superstructure<br>$\mu_r$ $K_m$ Foundation sciffness<br>soil non-homogeneity index $\chi$ Amplitude at the ith storey corresponding to the<br>fundamental mode of vibration of the superstructure<br>$\mu_r$ $K_m$ Foundation Rocking stif                                                                                                                                                     | Α                   | Area of the mat foundation                                                                               | III<br>N         | Number of storeus                                        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | С                   | Shape parameter of the backbone curve used in                                                            | IN<br>N          | Foundation ultimate moment capacity coefficient          |
| $C_r$ Initial elastic range of the backbone curve used in<br>NSR model $K$ Radius of the flat foundation<br>Mained shear strengthDDiameter of the mat foundation $S_{u0}$ Soil undrained shear strength $P_r$ Young's modulus of the foundation material $u$ Foundation sliding displacement $F_o$ Force at the start of the current plastic loading cycle $u_{50}$ Total foundation displacement at which 50% of capacity is mobilised $F_c$ Bearing capacity of foundation under combined $u_{e}$ Elastic component of foundation displacementFinForce when first entering the plastic cycle $u_p$ Plastic component of foundation displacement at the<br>start of the current plastic loading cycle $F_v$ Factor of safety of foundation against pure static $u_{p0}$ Plastic component of foundation displacement at the<br>start of the current plastic loading cycle $G$ Soil shear modulusground level $V_u$ Foundation settlement $H_c$ Foundation shear capacity under pure sliding<br>$h_{eff}$ $\rho$ Mass density $H_u$ Foundation shear capacity under pure sliding<br>$h_{eff}$ $\alpha_h$ Stiffness loss factor for foundation sugging response<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6                   | NSR model                                                                                                | IN <sub>CM</sub> | Podius of the mat foundation                             |
| NSK model $s_u$ Soft undrained site strength at ground levelDDiameter of the mat foundation $s_{u0}$ Soft undrained shear strength at ground level $E_f$ Young's modulus of the foundation material $u$ Foundation sliding displacement $F_o$ Force at the start of the current plastic loading cycle $u_{50}$ Total foundation displacement at which 50% of capa-<br>city is mobilised $F_c$ Bearing capacity of foundation under combined<br>loading $u_p$ Plastic component of foundation displacement $F_{in}$ Force when first entering the plastic cycle $u_p$ Plastic component of foundation displacement $F_{in}$ Force when first entering the plastic cycle $u_p$ Plastic component of foundation displacement $F_{iv}$ Factor of safety of foundation against pure static<br>vertical load $v_{p0}$ Plastic component of foundation displacement at the<br>start of the current plastic loading cycle $G$ Soil shear modulus $V$ Foundation vertical force $G_0$ Soil shear modulus at ground level $V_u$ Foundation settlement $H_e$ Foundation shear capacity under combined loading<br>$\mu_u$ $\rho$ Mass density $H_u$ Foundation shear capacity under pure siding<br>$h_i$ $a_r$ Stiffness loss factor for foundation swaying response $h_i$ Height of superstructure from base to the ith level<br>$h_{cont}$ $\beta$ Gradient defining the stiffness and strength profile of<br>the foundation stiffness after vertical load is fully<br>developed $\lambda$ Soil non-homogeneity $k_n$ Normal stiffness of the interfac                                                                                                                                                                                              | $C_r$               | Initial elastic range of the backbone curve used in                                                      | л<br>с           | Soil undrained shear strength                            |
| DDiameter of the mar foundationSubSolution intrained sitiend strength at ground level $E_f$ Young's modulus of the foundation materialuFoundation siding displacement $F_o$ Force at the start of the current plastic loading cycle $U_{50}$ Total foundation displacement at which 50% of capacity is mobilised $F_c$ Bearing capacity of foundation under combined<br>loading $u_e$ Elastic component of foundation displacement $F_m$ Force when first entering the plastic cycle $u_p$ Plastic component of foundation displacement $F_W$ Factor of safety of foundation against pure static $u_{p0}$ Plastic component of foundation displacement at the<br>start of the current plastic loading cycle $G$ Soil shear modulus at ground level $V_w$ Foundation vertical force $G_0$ Soil shear modulus at ground level $V_w$ Foundation settlement $H_e$ Foundation shear capacity under combined loading<br>$\mu_w$ $\rho$ Mass density $H_u$ Foundation shear capacity under pure sliding<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | D                   | NSR model                                                                                                | $S_u$            | Soil undrained shear strength at ground level            |
| $E_f$ Young's modulus of the foundation material $Total foundation sting uspacementF_oForce at the start of the current plastic loading cycleu_{50}Total foundation displacement at which 50% of capacity of foundation under combinedloadingF_cBearing capacity of foundation under combinedloadingu_eElastic component of foundation displacementF_mForce when first entering the plastic cycleu_pPlastic component of foundation displacementF_wFactor of safety of foundation against pure staticu_pPlastic component of foundation displacementF_wFactor of safety of foundation against pure staticu_pPlastic component of foundation displacementGSoil shear modulusground levelV_uFoundation bearing capacity under pure vertical loadH_cFoundation shear capacity under combined loading\rhoMass densityH_uFoundation shear capacity under pure slidingu_h\alpha_hStiffness loss factor for foundation rocking responseh_{eff}Effective height of the superstructureh_{tot}\alpha_rStiffness loss factor for foundation stiffness adstrength profile ofthe foundation stiffness after vertical load is fullydeveloped\chik_nNormal stiffness of the interface\nuPoisson's ratiofoundation materialk_rFoundation Rocking stiffnessk_r\nu_fPoisson's ratio of the foundation materialk_rFoundation sortifness of the interface\nuPoisson's ratiok_rFoundation rocking moment\nu_f<$                                                                                                                                                                                                                                                                                                                                                | D                   | Diameter of the mat foundation                                                                           | $S_{u0}$         | Foundation sliding displacement                          |
| $r_0$ Force at the start of the current plastic folding cycle $a_{50}$ Fortal foundation displacement at which 50% of capasitive folding $\psi_c$ $F_c$ Bearing capacity of foundation under combined<br>loading $u_e$ Elastic component of foundation displacement $F_{in}$ Force when first entering the plastic cycle $u_p$ Plastic component of foundation displacement $F_{in}$ Force when first entering the plastic cycle $u_p$ Plastic component of foundation displacement $F_{SV}$ Factor of safety of foundation against pure static<br>vertical load $u_{p0}$ Plastic component of foundation displacement at the<br>start of the current plastic loading cycle $G$ Soil shear modulus at ground level $V_u$ Foundation vertical forcePlastic component of foundation sequence $H_c$ Foundation shear capacity under combined loading<br>$H_{eff}$ $V_u$ Foundation settlement $H_c$ Foundation shear capacity under pure sliding<br>$h_{eff}$ $\alpha_h$ Stiffness loss factor for foundation rocking response $h_i$ Height of superstructure from base to the ith level<br>$h_{tor}$ $\beta$ Gradient defining the stiffness and strength profile of<br>the foundation swaying stiffness<br>$account soil heterogeneity$ $\lambda$ $k_{in}$ Normal stiffness of the interface $\psi_f$ Poisson's ratio $\psi_f$ Poisson's ratio $k_r$ Foundation socking stiffness<br>$k_r$ $\psi_f$ Poisson's ratio of the foundation material<br>$k_r$ $\phi$ $k_r$ Foundation stiffness of the interface $\psi_f$ Poisson's ratio of the foundation material<br>$k_r$ $\phi$ <td><math>E_f</math></td> <td>Young's modulus of the roundation material</td> <th>u<br/>11</th> <td>Total foundation displacement at which 50% of capa</td> | $E_f$               | Young's modulus of the roundation material                                                               | u<br>11          | Total foundation displacement at which 50% of capa       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | F <sub>0</sub><br>F | Force at the start of the current plastic loading cycle<br>Bearing capacity of foundation under combined | $u_{50}$         | city is mobilised                                        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 <sub>C</sub>      | loading                                                                                                  | u <sub>a</sub>   | Elastic component of foundation displacement             |
| $T_{m}$ Force when my check even $\mu$ $\mu$ Plastic component of foundation displacement at the<br>start of the current plastic loading cycle $FSv$ Factor of safety of foundation against pure static<br>vertical load $\mu_{po}$ Plastic component of foundation displacement at the<br>start of the current plastic loading cycle $G$ Soil shear modulus at ground level $V_u$ Foundation vertical force $H$ Foundation shear capacity under combined loading<br>$H_u$ $V_u$ Foundation settlement $H_c$ Foundation shear capacity under pure sliding<br>$h_{eff}$ $\alpha_h$ Stiffness loss factor for foundation swaying response $h_{eff}$ Effective height of the superstructure<br>to a leight of the superstructure from base to the ith level<br>$h_{tot}$ $\beta$ Gradient defining the stiffness and strength profile of<br>the foundation swaying stiffness<br>account soil leterogeneity $K_h$ Foundation swaying stiffness<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | F.                  | Force when first entering the plastic cycle                                                              | u <sub>n</sub>   | Plastic component of foundation displacement             |
| Noticevertical loadvertical loadstart of the current plastic loading cycleGSoil shear modulusVFoundation vertical forceG_0Soil shear modulus at ground level $V_u$ Foundation bearing capacity under pure vertical loadHFoundation shear forcewFoundation settlement $H_c$ Foundation shear capacity under combined loading $\rho$ Mass density $H_u$ Foundation shear capacity under pure sliding $\alpha_h$ Stiffness loss factor for foundation swaying response $h_{eff}$ Effective height of the superstructure $\alpha_r$ Stiffness loss factor for foundation rocking response $h_{eff}$ Iffective height of the superstructure $\alpha_r$ Stiffness loss factor for foundation rocking response $h_{eff}$ Effective height of the superstructure $\alpha_r$ Stiffness loss factor for foundation rocking response $h_i$ Height of superstructure from base to the ith level $\beta$ Gradient defining the stiffness and strength profile of<br>the foundation soil $K_h$ Bulk modulus $\chi$ Influence factor for foundation stiffness taking into<br>account soil heterogeneity $k_hr$ KethinInitial foundation stiffness after vertical load is fully<br>developed $\lambda$ $k_n$ Normal stiffness of the interface $\nu$ $k_r$ Foundation Rocking stiffness $\nu_f$ $k_s$ Tangential stiffness of the interface $\nu_f$ $k_r$ Foundation rotationFoundation rotation                                                                                                                                                                                                                                                                                                                                                          | FSv                 | Factor of safety of foundation against pure static                                                       | $u_{n0}$         | Plastic component of foundation displacement at the      |
| GSoil shear modulusVFoundation vertical force $G_0$ Soil shear modulus at ground level $V_u$ Foundation bearing capacity under pure vertical load $H$ Foundation shear force $w$ Foundation settlement $H_c$ Foundation shear capacity under pure sliding $\rho$ Mass density $H_u$ Foundation shear capacity under pure sliding $\alpha_h$ Stiffness loss factor for foundation swaying response $h_{eff}$ Effective height of the superstructure $\alpha_r$ Stiffness loss factor for foundation rocking response $h_i$ Height of superstructure from base to the <i>i</i> th level $\beta$ Gradient defining the stiffness and strength profile of<br>the foundation soil $K$ Bulk modulus $\chi$ Influence factor for foundation stiffness taking into<br>account soil heterogeneity $k_h$ Foundation stiffness after vertical load is fully<br>developed $\lambda$ $k_n$ Normal stiffness of the interface $\nu$ $k_r$ Foundation Rocking stiffness $\nu_f$ $k_r$ Foundation rocking moment $\mu$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 157                 | vertical load                                                                                            | <i>p</i> 0       | start of the current plastic loading cycle               |
| $G_0$ Soil shear modulus at ground level $V_u$ Foundation bearing capacity under pure vertical load $H$ Foundation shear force $w$ Foundation settlement $H_c$ Foundation shear capacity under combined loading $\rho$ Mass density $H_u$ Foundation shear capacity under pure sliding $\alpha_h$ Stiffness loss factor for foundation swaying response $h_{eff}$ Effective height of the superstructure $\alpha_r$ Stiffness loss factor for foundation rocking response $h_i$ Height of superstructure from base to the ith level $\beta$ Gradient defining the stiffness and strength profile of<br>the foundation soil $K$ Bulk modulus $\chi$ Influence factor for foundation stiffness taking into<br>account soil heterogeneity $k_h$ Foundation stiffness after vertical load is fully<br>developed $\lambda$ $k_n$ Normal stiffness of the interface $\nu$ $k_r$ Foundation Rocking stiffness $\nu$ $k_r$ Foundation Rocking stiffness $\nu_f$ $k_r$ Foundation Rocking stiffness of the interface $\nu_f$ $k_r$ Foundation Rocking stiffness of the interface $\nu_f$ $k_r$ Foundation rocking moment $\theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | G                   | Soil shear modulus                                                                                       | V                | Foundation vertical force                                |
| HFoundation shear forcewFoundation settlement $H_c$ Foundation shear capacity under combined loading $\rho$ Mass density $H_u$ Foundation shear capacity under pure sliding $\alpha_h$ Stiffness loss factor for foundation swaying response $h_{eff}$ Effective height of the superstructure $\alpha_r$ Stiffness loss factor for foundation rocking response $h_{eff}$ Effective height of the superstructure from base to the <i>i</i> th level $\beta$ Gradient defining the stiffness and strength profile of $h_{tot}$ Total height of the superstructure $\beta$ Influence factor for foundation stiffness taking into $K$ Bulk modulus $\chi$ Influence factor for foundation stiffness taking into $k_hr$ ( $k_{rh}$ )Coupled term in foundation stiffness matrix $\varphi_{i1}$ $k_{in}$ Initial foundation stiffness after vertical load is fully<br>developed $\lambda$ Soil non-homogeneity index $k_n$ Normal stiffness of the interface $\nu$ Poisson's ratio $k_r$ Foundation Rocking stiffness $\nu_f$ Poisson's ratio of the foundation material $k_s$ Tangential stiffness of the interface $\theta$ Foundation rotation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $G_0$               | Soil shear modulus at ground level                                                                       | $V_u$            | Foundation bearing capacity under pure vertical load     |
| $H_c$ Foundation shear capacity under combined loading<br>$\mu_u$ $\rho$ Mass density $H_u$ Foundation shear capacity under pure sliding<br>$h_{eff}$ $\alpha_h$ Stiffness loss factor for foundation swaying response $h_{eff}$ Effective height of the superstructure<br>$h_i$ $\alpha_r$ Stiffness loss factor for foundation rocking response $h_i$ Height of superstructure from base to the <i>i</i> th level<br>$h_{tot}$ $\beta$ Gradient defining the stiffness and strength profile of<br>the foundation soil $K$ Bulk modulus $\chi$ Influence factor for foundation stiffness taking into<br>account soil heterogeneity $k_h$ Foundation swaying stiffness $\varphi_{i1}$ Amplitude at the <i>i</i> th storey corresponding to the<br>fundamental mode of vibration of the superstructure<br>developed $k_n$ Normal stiffness of the interface $\nu$ Poisson's ratio $k_r$ Foundation Rocking stiffness<br>ating stiffness of the interface $\nu_f$ $k_s$ Tangential stiffness of the interface $\nu_f$ $M$ Foundation rocking moment $\theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H                   | Foundation shear force                                                                                   | w                | Foundation settlement                                    |
| $H_u$ Foundation shear capacity under pure sliding<br>$h_{eff}$ $\alpha_h$ Stiffness loss factor for foundation swaying response $h_{eff}$ Effective height of the superstructure<br>$h_i$ $\alpha_r$ Stiffness loss factor for foundation rocking response $h_i$ Height of superstructure from base to the <i>i</i> th level<br>$h_{tot}$ $\beta$ Stiffness loss factor for foundation rocking response $h_{iot}$ Total height of the superstructure<br>$h_{tot}$ $\beta$ Gradient defining the stiffness and strength profile of<br>the foundation soil $K$ Bulk modulus<br>$k_h$ $\chi$ Influence factor for foundation stiffness taking into<br>account soil heterogeneity $k_hr$ ( $k_{rh}$ )Coupled term in foundation stiffness after vertical load is fully<br>developed $\psi_{i1}$ Amplitude at the <i>i</i> th storey corresponding to the<br>fundamental mode of vibration of the superstructure<br>$k_n$ Normal stiffness of the interface $\nu$<br>Poisson's ratioSoil non-homogeneity index $k_s$ Tangential stiffness of the interface $\nu_f$ Poisson's ratio of the foundation material<br>$\theta$ $M$ Eoundation rocking stiffness $\nu_f$ Point ation rotation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $H_c$               | Foundation shear capacity under combined loading                                                         | $\rho$           | Mass density                                             |
| $h_{eff}$ Effective height of the superstructure $\alpha_r$ Stiffness loss factor for foundation rocking response $h_i$ Height of superstructure from base to the <i>i</i> th level $\beta$ Gradient defining the stiffness and strength profile of $h_{tot}$ Total height of the superstructure $\beta$ Gradient defining the stiffness and strength profile of $k_{tot}$ Bulk modulus $\chi$ Influence factor for foundation stiffness taking into $k_h$ Foundation swaying stiffness $\chi$ Influence factor for foundation stiffness taking into $k_{hr}$ ( $k_{rh}$ )Coupled term in foundation stiffness after vertical load is fully<br>developed $\lambda$ Soil non-homogeneity index $k_n$ Normal stiffness of the interface $\nu$ Poisson's ratio $k_r$ Foundation Rocking stiffness $\nu_f$ Poisson's ratio of the foundation material $k_s$ Tangential stiffness of the interface $\theta$ Foundation rotation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $H_u$               | Foundation shear capacity under pure sliding                                                             | $\alpha_h$       | Stiffness loss factor for foundation swaying response    |
| $h_i^{o}$ Height of superstructure from base to the <i>i</i> th level<br>$h_{tot}$ $\beta$ Gradient defining the stiffness and strength profile of<br>the foundation soil $K$ Bulk modulus $\chi$ Influence factor for foundation stiffness taking into<br>account soil heterogeneity $k_h$ Foundation swaying stiffness $\chi$ Influence factor for foundation stiffness taking into<br>account soil heterogeneity $k_{hr}$ ( $k_{rh}$ )Coupled term in foundation stiffness after vertical load is fully<br>developed $\lambda$ Amplitude at the <i>i</i> th storey corresponding to the<br>fundamental mode of vibration of the superstructure<br>$\lambda$ $k_n$ Normal stiffness of the interface $\nu$ Poisson's ratio $k_r$ Foundation Rocking stiffness $\nu_f$ Poisson's ratio of the foundation material<br>$\theta$ $k_s$ Tangential stiffness of the interface $\theta$ Foundation rotation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $h_{eff}$           | Effective height of the superstructure                                                                   | $\alpha_r$       | Stiffness loss factor for foundation rocking response    |
| $h_{tot}$ Total height of the superstructurethe foundation soil $K$ Bulk modulus $\chi$ Influence factor for foundation stiffness taking into<br>account soil heterogeneity $k_h$ Foundation swaying stiffness $\chi$ Influence factor for foundation stiffness taking into<br>account soil heterogeneity $k_{hr}$ ( $k_{rh}$ )Coupled term in foundation stiffness matrix $\varphi_{i1}$ Amplitude at the <i>i</i> th storey corresponding to the<br>fundamental mode of vibration of the superstructure<br>developed $k_n$ Normal stiffness of the interface $\nu$ Poisson's ratio $k_r$ Foundation Rocking stiffness $\nu_f$ Poisson's ratio of the foundation material<br>$\theta$ $k_s$ Tangential stiffness of the interface $\theta$ Foundation rotation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | h <sub>i</sub>      | Height of superstructure from base to the <i>i</i> th level                                              | β                | Gradient defining the stiffness and strength profile of  |
| KBulk modulus $\chi$ Influence factor for foundation stiffness taking into<br>account soil heterogeneity $k_h$ Foundation swaying stiffness $\chi$ Influence factor for foundation stiffness taking into<br>account soil heterogeneity $k_{hr}$ ( $k_{rh}$ )Coupled term in foundation stiffness matrix $\varphi_{i1}$ Amplitude at the <i>i</i> th storey corresponding to the<br>fundamental mode of vibration of the superstructure<br>Soil non-homogeneity index $k_n$ Normal stiffness of the interface $\nu$ Poisson's ratio $k_r$ Foundation Rocking stiffness $\nu_f$ Poisson's ratio of the foundation material $k_s$ Tangential stiffness of the interface $\theta$ Foundation rotation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | h <sub>tot</sub>    | Total height of the superstructure                                                                       |                  | the foundation soil                                      |
| $k_h$ Foundation swaying stiffnessaccount soil heterogeneity $k_{hr}$ ( $k_{rh}$ )Coupled term in foundation stiffness matrix $\varphi_{i1}$ Amplitude at the <i>i</i> th storey corresponding to the<br>fundamental mode of vibration of the superstructure<br>developed $k_n$ Normal stiffness of the interface $\nu$ Poisson's ratio $k_r$ Foundation Rocking stiffness $\nu_f$ Poisson's ratio of the foundation material $k_s$ Tangential stiffness of the interface $\theta$ Foundation rotation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | K                   | Bulk modulus                                                                                             | χ                | Influence factor for foundation stiffness taking into    |
| $k_{hr}$ ( $k_{rh}$ )Coupled term in foundation stiffness matrix $\varphi_{i1}$ Amplitude at the <i>i</i> th storey corresponding to the<br>fundamental mode of vibration of the superstructure<br>soil non-homogeneity index $k_{in}$ Normal stiffness of the interface $\nu$ Soil non-homogeneity index $k_n$ Normal stiffness of the interface $\nu$ Poisson's ratio $k_r$ Foundation Rocking stiffness $\nu_f$ Poisson's ratio of the foundation material $k_s$ Tangential stiffness of the interface $\theta$ Foundation rotation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $k_h$               | Foundation swaying stiffness                                                                             |                  | account soil heterogeneity                               |
| $k_{in}$ Initial foundation stiffness after vertical load is fully<br>developedfundamental mode of vibration of the superstructure<br>Soil non-homogeneity index $k_n$ Normal stiffness of the interface $\nu$ Poisson's ratio $k_r$ Foundation Rocking stiffness $\nu_f$ Poisson's ratio of the foundation material $k_s$ Tangential stiffness of the interface $\theta$ Foundation rotation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $k_{hr}$ $(k_{rh})$ | Coupled term in foundation stiffness matrix                                                              | $arphi_{i1}$     | Amplitude at the <i>i</i> th storey corresponding to the |
| developed $\lambda$ Soil non-homogeneity index $k_n$ Normal stiffness of the interface $\nu$ Poisson's ratio $k_r$ Foundation Rocking stiffness $\nu_f$ Poisson's ratio of the foundation material $k_s$ Tangential stiffness of the interface $\theta$ Foundation rotationMFoundation procking momentFoundation rotation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | k <sub>in</sub>     | Initial foundation stiffness after vertical load is fully                                                |                  | fundamental mode of vibration of the superstructure      |
| $k_n$ Normal stiffness of the interface $\nu$ Poisson's ratio $k_r$ Foundation Rocking stiffness $\nu_f$ Poisson's ratio of the foundation material $k_s$ Tangential stiffness of the interface $\theta$ Foundation rotationMFoundation rocking momentFoundation rotation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     | developed                                                                                                | λ                | Soil non-homogeneity index                               |
| $k_r$ Foundation Rocking stiffness $\nu_f$ Poisson's ratio of the foundation material $k_s$ Tangential stiffness of the interface $\theta$ Foundation rotationMFoundation rocking moment $\theta$ Foundation rotation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $k_n$               | Normal stiffness of the interface                                                                        | u                | Poisson's ratio                                          |
| $k_{\rm s}$ Tangential stiffness of the interface $	heta$ Foundation rotation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | k <sub>r</sub>      | Foundation Rocking stiffness                                                                             | $ u_f$           | Poisson's ratio of the foundation material               |
| M Foundation rocking moment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | k <sub>s</sub>      | Tangential stiffness of the interface                                                                    | $\theta$         | Foundation rotation                                      |
| in Foundation focking moment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Μ                   | Foundation rocking moment                                                                                |                  |                                                          |

integrating the nonlinearities (in the soil and/or at the soilfoundation interface) into a single plasticity-based element, has attracted considerable attention (e.g. [11–13]). However, this macro element for practical engineers remains a "black box" where the multi-yield (and sometimes multi-mechanism) complexity makes it difficult to be implemented into computer codes [14].

On the other hand, using spring-type models to simulate the dynamic response of soil-structure systems is popular in design practice because of their ease of use and clear physical meaning. Examples include (1) the linear dynamic impedance models (e.g. cone model [15]) used in the analysis of foundation vibrations on an elastic soil medium, (2) Winkler-based linear/nonlinear spring-bed models (e.g. [16,17]), and (3) the nonlinear rotational spring model [18] for the analysis of rocking-dominant nonlinear foundation behaviour. These models usually assume that the foundation soil is homogeneous, whereas in most cases the soil stiffness and strength increase with depth due to the effects of overburden stress. There is a lack of an effective and efficient spring-type model which is able to capture both Nonlinear Sway-Rocking response of shallow foundations and soil non-homogeneity.

This paper presents a simplified Nonlinear Sway-Rocking (NSR) model that is capable of simulating the load-displacement response of mat foundations subjected to seismic excitations. Compared with the linear/nonlinear spring-type models in the literature, the present model in this study is able to simulate the nonlinear foundation sway-rocking response which can be significantly affected by the load path of the seismically-excited SSI system. The effect of soil non-homogeneity is also considered. The model is developed using the OpenSees platform [23] and verified

using data obtained from more rigorous Finite Difference (FD) analyses conducted using FLAC<sup>3D</sup>. The simplified model is well suited for heavily-loaded structures with a moderate slenderness ratio for which the nonlinear sway response is strongly coupled with the rocking response.

The paper is organised into six main sections. First, an overview of the problem is provided, followed by a description of a FLAC<sup>3D</sup> numerical model and static analyses conducted to identify the foundation load-displacement relations and bearing capacities. The NSR model is then developed based on calibration of analytical foundation backbone curves with load-displacement relations obtained from the FLAC<sup>3D</sup> static push-over tests. The process by which the coupling between swaying and rocking motions is taken into account in the proposed model is also described. The efficiency of the NSR model to predict load-displacement and moment-rotation responses of shallow foundations to dynamic loading is demonstrated using results obtained from additional dynamic FLAC<sup>3D</sup> numerical simulations. Finally, the limitations of the model are discussed and conclusions are provided.

#### 2. Problem definition

The problem investigated in this study (Fig. 1) is a seismicallyexcited building founded on a half-space consisting of saturated soft clay layers, where undrained shear strength  $s_u$  and stiffness *G* increase linearly with depth (Poisson's ratio  $\nu$  and density  $\rho$ remain constant). The foundation is assumed to be rigid, which is appropriate for a mat foundation that is much stiffer than the soil. Foundation movements are described by the translations *w*  Download English Version:

# https://daneshyari.com/en/article/303904

Download Persian Version:

https://daneshyari.com/article/303904

Daneshyari.com