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a b s t r a c t

With the aid of a complete set of two scalar potential functions, the problem of transient wave propa-
gation in transversely isotropic half-space, subjected to time dependent tractions applied on a finite
patch at an arbitrary depth below the free surface of the half-space is investigated. With the use of the
displacement–potential function relationships in a cylindrical coordinate system, the coupled equations
of motion are uncoupled; resulting in two separate partial differential equations one of which is second
order and the other is fourth order. These two partial differential equations are solved with the aid of
both Fourier series expansion and joint Hankel–Laplace integral transforms. The solutions are also
investigated in details for tractions varying with time as Heaviside step function, which may be used as a
kernel in any integral based method for more complicated elastodynamic initial-boundary value pro-
blems. Moreover, some displacement Green's functions are numerically evaluated for a synthetic
transversely isotropic material to graphically demonstrate the transient motion of the free surface of the
half-space.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Because of its applications and mathematical challenges, both
engineers and mathematicians are interested in the wave propa-
gation in elastic solids especially in a time domain (see for
example [1,2]). The study of elastic wave propagation, particularly
those with transient nature, has many applications in linear and
nonlinear soil–structure-interaction, foundation analysis including
piles and underground structures [3], dynamic compaction of soil,
dynamic replacement of soil, Earthquake engineering, foundation
of theoretical seismology, geophysical related problems and
machine foundation design [4–9]. The fundamental solutions for
transient elastodynamics of either full-space or half-space may be
used for integral base numerical solution of nonlinear soil–struc-
ture interaction for more complicated geometry [10,3]. Analytical
solutions play an important role in a deep understanding of a
scientific phenomenon [11,12], although some simplifications
need to be made in the process of deriving them. In particular,
analytical solutions can also play a unique role in validating many
new numerical methods [13,14]. For these reasons, analytical
solutions have been derived in recent years for many scientific

problems. In actual engineering problems, where the effects of
complex loading situation and complex boundary conditions are
indispensable, the numerical methods must be used to solve the
problem. One of the powerful numerical methods for solving the
linear partial differential equations arise in engineering problems
is the boundary element method (BEM), where analytical solution
in the domain is, (with the aid of Betti's theorem [4]), obtained
after determining the values of the interested fields at the
boundary, numerically [10,3]. However, this method needs the
determination of the Green's functions for the problem associated
with the boundary conditions. Thus in the recent years, a lot of
researches have been devoted for determination of Green's func-
tions. Rajapakse and Wang [15], with the use of displacement
potential function accompanied with Fourier transform deter-
mined the dynamic displacement Green's functions of an ortho-
tropic elastic half-plane subjected to a time-harmonic buried force.
Wang and Rajapakse [16] found the internal source Green's func-
tion for a transversely isotropic half-space in a time domain in
both 2D and 3D cases, where the joint of Laplace–Fourier and
Laplace–Hankel integral transforms were used, respectively for 2D
and 3D states after using a displacement potential functions for
the equations of motion. Wang and Achenbach [17] determined
both the 3D and 2D time-domain elastodynamic Green's functions
for linearly elastic anisotropic materials with the application of
Radon transform. Their fundamental solutions are in the form of a
surface integral over the surface of a unit sphere for 3-D cases and
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are over a unit circle path for 2D cases. In addition, their Green's
functions are evaluated in the frequency domain readily by a
subsequent evaluation of the Fourier transforms of the time-
domain solutions. Kausel [18] presented the Green's functions
for many different cases such as SH line load, double couples,
suddenly line and point loads, etc.

One of the most important contributions in the analytical study
of transient wave propagation in elastic isotropic materials is due
to Pekeris [19–21]. With the aid of the Laplace and Hankel integral
transforms, implementation of Helmholtz decomposition theo-
rem, and the use of Cagniard-De Hoop trick [22,23], Pekeris [21,22]
derived an analytical solution for the transient equations of
motion in an axisymmetric half-space due to surface and buried
impulse loading. In particular, he computed the displacement at
the free surface and showed the arrival time of different waves
including P� , SV� and Rayleigh waves. Chao [24] derived a closed
form solution for radial and tangential displacements at the sur-
face of a half-space due to surface horizontal point force varying
with time as a Heaviside step function. Jin and Liu [25], with the
use of the joint Hankel–Laplace integral transforms accompanied
with Cagniard–De Hoop method, have determined the exact ana-
lytical solution for the horizontal displacement at the center of a
circular surface patch of an elastic isotropic half-space, which is
under an impulsive constant distributed loading.

Anisotropy is a common property of engineering materials such
as soil (because of sedimentation), rock, reinforced concrete and
many man-made materials such as composites and piezo-
composites. Thus, the wave propagation in anisotropic materials
is recently of major concern. The high performance of anisotropic
materials in technological applications is another reason for
studying the response of anisotropic material to mechanical force,
displacement and other phenomenon. Most innovative materials
such as composites, piezo-composites and magnetics are aniso-
tropic, and in applications need to be modeled as either trans-
versely isotropic or orthotropic materials [26,27]. The early work
of Stoneley [28] revealed that wave propagation in a transversely
isotropic medium gives rise to a phenomenon, which greatly dif-
fers from the case where the medium is isotropic. Later, Synge
[29], Buchwald [30] and Payton [31] studied the elastodynamic
problems pertinent to the transversely isotropic half-space.

The potential method is a powerful tool for solving the coupled
both equilibrium equations and equations of motion. Lekhnitskii in
1940 derived a potential function for axisymmetric elastostatic
problems of transversely isotropic media [32,33]. Hu [34] and
Nowakii [35] studied the general case of elastostatic problem in
transversely isotropic media and generalized Lekhnitskii's solution
to the asymmetric case, which is now called as Lekhnitskii–Hu–
Nowacki solution [36]. Eskandari-Ghadi [33] has introduced a
complete solution for the general elastodynamics problems in
linear transversely isotropic mono-axial-convex domain in terms
of two potential functions, one of which describes SH-wave and
the other gives both SV- and P-waves in any plane containing the
axis of material symmetry. With the aid of this representation,
Eskandari-Ghadi and Sattar [37], investigated the problem of
transient wave in an axisymmetric transversely isotropic half-
space due to surface loading and their solution included an inte-
gral representation with a finite limit.

In the present study, a transversely isotropic half-space is
considered as the domain of the problem, and the potential
functions introduced by Eskandari-Ghadi [33] is implemented to
derive the analytical solution for the displacement Green's func-
tion of transversely isotropic half-space under the action of tran-
sient tractions applied at an arbitrary depth of the half-space. To
do so, with the use of the representations for the displacements, in
terms of two scalar potential functions; the elastodynamic gov-
erning partial differential equations are uncoupled into a fourth-

and a second-order partial differential equations in cylindrical
coordinate system and solved by virtue of Fourier series expansion
in terms of the angular coordinate and joint Hankel–Laplace
integral transforms in term of radial-time variables, along with
satisfying both the boundary and regularity conditions.

The Green's functions derived in this paper are applicable as inte-
gral kernels in the boundary element method or any other boundary
integral formulations to solve more complicated engineering initial-
boundary value problems such as either linear or non-linear dynamic
analysis of anisotropic soil–structure-interaction as well as earthquake
engineering and rock engineering relevant problems. For instance, the
topic of the forced vibrations of rigid disc embedded at an arbitrary
depth in a semi-infinite transversely isotropic medium, which is a
subject of considerable interest in geo-mechanics and civil engineering
could be treated with the aid of these Greens' functions [38,39].
Another interesting application of the proposed model may be found
in geophysical applications, such as earthquake and volcano source
monitoring. Moreover, the Green's functions for the point load exci-
tation may be used in the dislocation formulation of co-seismic
deformations arise from the rupture of buried faults, so that they
can find some applications in the emerging computational geosciences
field [40–43].

2. Statement of the problem

A transversely isotropic half-space in a cylindrical coordinate
system is considered as the domain of the problem in such a way
that the axis of symmetry of the material to be depth-wise (Fig. 1).
The displacement equations of motion in the cylindrical coordi-
nate system for homogenous transversely isotropic solid in the
absence of body force may be expressed as [26]:
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where u¼ ðu; v;wÞ is the displacement vector, C11; C33; C12; C13,
C44 and C66 ¼ C11�C12ð Þ=2 are the elastic constants and ρ is the
density of the medium. In view of the positive definiteness of the

Fig. 1. Transversely isotropic half-space under buried arbitrary time dependent force.
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