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a b s t r a c t

In this study an analytical model of offshore wind turbines (OWTs) supported on flexible foundation is
presented to provide a fast and reasonably accurate natural frequency estimation suitable for
preliminary design or verification of Finite Element calculations. Previous research modelled the
problem using Euler–Bernoulli beam model where the foundation is represented by two springs (lateral
and rotational). In contrast, this study improves on previous efforts by incorporating a cross-coupling
stiffness thereby modelling the foundation using three springs. Furthermore, this study also derives the
natural frequency using Timoshenko beam model by including rotary inertia and shear deformation. The
results of the proposed model are also compared with measured values of the natural frequency of four
OWTs obtained from the literature. The results show that the Timoshenko beammodel does not improve
the results significantly and the slender beam assumption may be sufficient. The cross-coupling spring
term has a significant effect on the natural frequency therefore needs to be included in the analysis. The
model predicts the natural frequency of existing turbines with reasonable accuracy.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In order to ensure optimum performance throughout its design
life, predicting the long term behaviour of offshore wind turbines
(OWTs) is essential. However, data are scarce on the long term
performance of these complex mechanical systems. The loading of
OWTs is complex due to a combination of static, cyclic and dynamic
loads [1]. However OWTs must be designed to avoid forcing frequen-
cies due to wind turbulence, waves and also the rotational frequency
(1 P) and the blade passing frequencies. The importance of dynamics
for offshore wind turbines is well established in the literature ([1–5])
and it is well known from the literature that repeated cyclic or
dynamic loads ([12–14]) on a soil can cause a change in its properties
leading to alteration of the stiffness of the foundation ([2,6,7]). A wind
turbine structure derives its stiffness from the supporting foundation
and any change in its stiffness may shift the natural frequency closer
to the forcing frequencies. This issue is particularly problematic to the
soft-stiff structure (natural frequency between 1 P and 3 P frequency)
as any increase or decrease in the natural frequency will impinge on
the forcing frequencies and may lead to unplanned resonance and

increased fatigue damage. This may lead to loss of years of service,
which is to be avoided.

Difference between design and measured natural frequency is
reported in the literature. Two examples are considered here: (a)
Walney 1 Wind farm: the actual natural frequency was 6–7% higher
than the estimated for a Siemens SWT-3.6-107 turbine at the Walney
1 site, see [9]; (b) Twisted jacket at Hornsea Site: difference between
the design and measured frequency was observed in the case of the
Hornsea Met Mast supported on a ‘Twisted Jacket’ foundation [8]. In
this demonstration project it was found that the foundation was
stiffer than expected and the initial measured frequency was 1.28–
1.32 Hz as opposed to the design frequency of 1 Hz. Furthermore,
after three months, the natural frequency shifted to 1.13–1.15 Hz,
likely due to softening of the soil. These cases clearly highlight the
importance of prediction of the natural frequency.

The aim of this work is to provide an analytical estimation for
the natural frequency of monopile supported offshore wind
turbines where the foundation is modelled using three springs:
(a) Lateral spring (KL); (b) Rotational spring (KR); (c) A cross
coupling spring (KLR) which is in contrast to the uncoupled springs
model ([1,3,9,10]). Furthermore, present study also extends the
analysis by incorporating the Timoshenko beam model ([11,12])
which also accounts for rotary inertia and shear deformation.
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2. Structural model of the offshore wind turbine

The structural model used in this paper is shown in Fig. 1. The
foundation is represented by three springs: lateral KL, rotational
KR and cross KLR stiffness. The tower is idealised by equivalent
bending stiffness and mass per length following [9,13] and is
modelled using two beam theories: Euler–Bernoulli and
Timoshenko. The later accounts for shear deformation and the
effect of rotational inertia. The nacelle and rotor assembly is
modelled as a top head mass with mass moment of inertia.

2.1. Foundation model

In Fig. 1 the foundation is represented by four springs, a lateral
KL, a rotational KR, a cross coupling KLR and also a vertical spring
(KV), which is neglected because the structure is very stiff
vertically. The method of Gazetas [14] can be used for the
estimation of the spring stiffness of slender piles (also recom-
mended in Eurocode 8, Part 5 [15]), however, this is not validated
for very large diameter piles. In the absence of directly measured
values of stiffness, the Finite Element (FE) approach may produce
more reliable results (see e.g. Lesny et al. [16]). The three spring

model can be written with a stiffness matrix as the following:
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where Fx is the lateral force, My is the fore-aft moment, w is the
displacement and w0 ¼ ∂w=∂z is the slope.

2.2. Model of the rotor-nacelle assembly

The rotor-nacelle assembly is modelled as a top head mass M2

with mass moment of inertia J, as shown in Fig. 1. These
parameters are used in formulating the end boundary conditions
of the PDEs of the motion of the tower in Section 2.3. In addition,
the mass M2 exerts a downwards pointing force P due to gravity,
and the self-weight of the structure also acts on the sections
below. The total vertical force is

P ¼ �M2g�mg L�zð Þ ð2Þ

where m is the average mass per length of the tower, L is the
height of the tower. An approximate expression for a constant

Fig. 1. Mechanical model of a wind turbine.

Table 1
Non-dimensional groups: definitions and practical range.

Dimensionless group Formula Typical values

Non-dimensional lateral stiffness ηL ¼ KLL
3=EI 2500–12000

Non-dimensional rotational stiffness ηR ¼ KRL=EI 25–80
Non-dimensional cross stiffness ηLR ¼ KLRL

2=EI (�515) to (�60)

Non-dimensional axial force ν¼ PnL2=EI 0.005–0.1

Mass ratio α¼M2=M3 0.75–1.2
Non-dimensional rotary inertia β¼ J=mL2

a

Non-dimensional shear parameter γ ¼ E=Gk �4.5 (for steel tubular towers)
Non-dimensional radius of gyration μ¼ r=L
Frequency scaling parameter c0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=M3L

3
q �1–5

Non-dimensional rotational frequency
Ωk ¼ωk=c0 ¼ωk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=M3L

3
q

–

KL; KR ; KLR are the lateral, rotational and cross stiffness of the foundation, respectively; EI is the equivalent bending; L is the
height of the tower; Pn is the modified axial force (see Eq. 3), M2 is the top head mass; M3 is the mass of the tower; J is the
rotary inertia of the top mass; m is the equivalent mass per unit length of the tower; r ¼

ffiffiffiffiffiffiffi
I=A

p
is the radius of gyration of the

tower, ωk is the kth natural frequency.
a The rotary inertia is taken to be zero for all wind turbines considered as information is not available in the referenced

literature.
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