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ABSTRACT

It is understood that sample size could be an issue in earthquake statistical studies, causing the best
estimate being too deterministic or less representative derived from limited statistics from observation.
Like many Bayesian analyses and estimates, this study shows another novel application of the Bayesian
approach to earthquake engineering, using prior data to help compensate the limited observation for the
target problem to estimate the magnitude of the recurring Meishan earthquake in central Taiwan. With
the Bayesian algorithms developed, the Bayesian analysis suggests that the next major event induced by
the Meishan fault in central Taiwan should be in M,, 6.44 + 0.33, based on one magnitude observation of
M,, 6.4 from the last event, along with the prior data including fault length of 14 km, rupture width of
15 km, rupture area of 216 km?, average displacement of 0.7 m, slip rate of 6 mm/yr, and five earthquake
empirical models.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The region around Taiwan is known for high seismicity, not to
mention a catastrophic event like the M,, 7.6 Chi-Chi earthquake
could recur in decades [1]. Recently, there are studies suggesting that
the return period of a major earthquake induced by the Meishan
fault in central Taiwan might be as short as 160 years, not to mention
the very last Meishan earthquake in 1906 was occurring more than
one hundred years ago. Under the circumstances, the risk of the
active fault inducing a major earthquake in near future is considered
relatively high, and the subject has been discussed in several recent
studies [2,3]. Therefore, from a different perspective with new
methodology, the target problem of this study is to evaluate the
magnitude of the next Meishan earthquake in central Taiwan that
could occur in near future given its short return period. More
introductions to the background of the Meishan fault in central
Taiwan are given in one of the following sections.

One possibility to evaluate such a problem is via statistical
study. But on the other hand, it is understood that sample size is
important to statistical assessments and inferences. For example,
given an active fault is known for inducing a major earthquake in
M,, 6.5 (moment magnitude), a best estimate on the magnitude of
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the next recurrence will be exactly the same size as the observa-
tion, although it is less representative based on one magnitude
observation only. Unfortunately, this is the same situation for the
target problem of the study, aiming to evaluate the magnitude of
the next Meishan earthquake but with only one magnitude
observation available for the analysis.

In contrast to statistics-based methods, the Bayesian inference is
a relatively new approach that is more useful for evaluating a
problem with very limited observations. Basically, the Bayesian
approach is to use other sources of data to compensate limited
statistics, helping develop a new Bayesian estimate by integrating
multiple sources/types of data, usually referred to as prior and
observation.

The Bayesian approach has been increasingly applied to many
different studies to develop a new estimate from multiple sources
of data e.g., [4-6]. In earthquake engineering and engineering
seismology, an early study can be dated back to the 1960s [7],
introducing the framework of the Bayesian calculation for seis-
mology research. More recently, several other Bayesian methods
for earthquake studies were reported, such as the application to
earthquake early warning [8,9], tectonic stress evaluation [10], and
earthquake catalog characterizations [11], among others [12,14].

Although many different applications were reported, the under-
lying motivation of the Bayesian studies is the same: Integrating
multiple sources/types of data to evaluate or re-evaluate a problem,
rather than only relying on (limited) statistics from observation. Take
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those studies above for example, the framework of Bayesian earth-
quake early warning is to utilize some empirical models to compen-
sate the limited data at the initial stage of earthquake, for estimating
its magnitude and location more reliably on a real-time basis [8,9].
On the other hand, a Bayesian algorithm [11] to evaluate the
completeness magnitude (M.) of an earthquake catalog is facilitated
with the prior data in proximity regions, then integrated with the
locally observed seismicity. Note that such a Bayesian calculation is
similar to a later application to estimate earthquake rates (or
frequencies) around a study area, also using the data from proximity
areas as priors [ 14]. Other recent Bayesian applications to earthquake
studies include the probability assessment on earthquake-induced
landslides [31], evaluation of the source parameters of a major
earthquake [32], and structure safety analysis under earthquake
condition [33]. Similarly, new Bayesian methods are increasingly
developed for other problems [34-36].

As a result, given the short return period reported, the key scope
of the study is to evaluate the magnitude of the next major earth-
quake induced by the Meishan fault in central Taiwan, on the basis of
a novel Bayesian calculation integrating multiple sources/types of
data to compensate the lack of adequate statistics from observation.
In this study, we first derived a new Bayesian algorithm for
evaluating earthquake magnitude distributions related to an active
fault, based on both observational and prior data. Next, we applied
the methodology to the target problem, showing there should be a
10% probability for the next Meishan earthquake in central Taiwan to
exceed M,, 6.9, considering one magnitude observation of M,,
6.4 from the last Meishan earthquake, and the prior data including
fault length of 14 km, rupture width of 15 km, rupture area of
216 km?, average displacement of 0.7 m, slip rate of 6 mm/yr, and
five earthquake empirical models.

The paper is organized with an overview of the Bayesian
approach, followed by the introductions to the Meishan fault in
central Taiwan. Next, the observation and prior data for this
Bayesian study were introduced and summarized, followed by
the developments of the new Bayesian algorithm, and the Baye-
sian inference to the magnitude of the next Meishan earthquake
from the multiple sources/types of data.

2. Overview of the Bayesian approach
2.1. The algorithm

As mentioned previously, the Bayesian approach is to integrate
prior information with (limited) observation to develop a new
estimate, which is different from the one relying on samples or
statistics only. To further illustrate the method, we summarized an
example from the literature as follows [15]: Fig. 1a shows the prior
information or the so-called prior probability mass function about
the accident at a given cross road, suggesting the mean rate equal to
two accidents per year. It is worth noting that because this example
is a discrete case, its probability function is specifically referred to as
probability mass function (PMF), in contrast to probability density
function (PDF) that is used for describing the probability function of
a continuous random variable [15]. Nevertheless, the two basically
refer to the same thing in probability and statistics.

On the other hand, given the total number of accidents equal to
one observed in an arbitrary month, the accident rate should be 12
per year from the observation. Note that although the reference
only mentions “one accident observed in one month” in the
description to the example [15], the description should explicitly
imply the one-month observation was conducted in an arbitrary
period of 30 (or 31) days in a row. Therefore, in this paper we refer
to such a description or the observation as “one-accident-in-one-
arbitrary-month” in the following.
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Fig. 1. A demonstration example to the Bayesian approach: (a) the prior informa-
tion or the prior probability mass function, and (b) the posterior integrating the
prior with the observation [1].

In addition to the two estimates from observation or prior, the
third one is the Bayesian estimate by integrating the two. For a
discrete case like this demonstration example, the underlying algo-
rithm of the Bayesian approach can be expressed as follows [15]:
pr(6) = P00 Ple10) o

421 P'(6)) x P(e|6))
1=

where & denotes observation, P'(6;)andP”(6;)are prior and posterior
probabilities for each prior estimate 6;, and P(e| ;) is the likelihood
function, or the probability for observation & to occur given ;.

Understandably, 6;, P'(6;), and & are the given data in a Bayesian
calculation. (For this demonstration example, #; are 1 or 2 or
3 accidents, P'(0;) are 30% or 40% or 30%, and ¢ is the “one-
accident-in-one-arbitrary-month” observation.) By contrast, P(e|8;)
and P”(6;) are unknowns that we want to calculate during the
Bayesian analysis. More importantly, from the unique algorithm
given in Eq. (1), we can see how the Bayesian approach integrates
prior data and observation with the well-established algorithm.

It is worth noting that in the calculation of the likelihood function
P(e|6;), we need to know (or assume) what kind of probability
distributions the target random variable should be following. That is,
in this demonstration example, the accident rate is considered
following the Poisson distribution, with its probability mass function
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