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a b s t r a c t

This research proposed a novel and powerful surface wave dispersion curve inversion scheme called
Grey Wolf Optimizer (GWO) inspired by the particular leadership hierarchy and hunting behavior of grey
wolves in nature. The proposed strategy is benchmarked on noise-free, noisy, and field data. For
verification, the results of the GWO algorithm are compared to genetic algorithm (GA), the hybrid
algorithm (PSOGSA)-the combination of Particle Swarm Optimization (PSO) and Gravitational Search
Algorithm (GSA), and gradient-based algorithm. Results from both synthetic and real data demonstrate
that GWO applied to surface wave analysis can show a good balance between exploration and
exploitation that results in high local optima avoidance and a very fast convergence simultaneously.
The great advantages of GWO are that the algorithm is simple, flexible, robust and easy to implement.
Also there are fewer control parameters to tune.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years Rayleigh waves have captured the interest of a
constantly increasing number of researchers from different dis-
ciplines for a wide range of applications [1–3]. They can be used to
obtain near-surface S-wave velocity models [4], to map bedrock
[5], to infer subsurface properties in viscoelastic media [6], to
determine Q of near-surface materials [7,8], to assess soil liquefac-
tion potential [9], to delineate a shallow fault zone [10], to
characterize pavement structure [11,12], to characterize seismic
site structure [13], and to perform a joint inversion with refrac-
tions [14,15], reflection travel times [16], Love waves [17] or
attenuation curves [18]. In these significant applications, utiliza-
tion of Rayleigh wave dispersive properties is often divided into
three procedures: field data acquisition [19–22], reconstruction of
dispersion curves [23], and inversion of phase velocities [24–28].

Once Rayleigh wave dispersion curve is properly identified, its
inversion is the key point to obtain S-wave velocity profiles [29–31]. A
variety of local optimizationmethods have been developed andwidely
used to interpret Rayleigh wave data [32–34]. However, inversion of
Rayleigh waves is typically a highly nonlinear, multiparameter, and
multimodal inversion problem. The objective function for surface
wave inversion has massive local optima with the number increasing
exponentially with dimension. Consequently, linearized inversion
strategies are prone to being trapped by local minima, and their
success depends heavily on the choice of the initial model and on the

accuracy of partial derivatives. Thus, global optimization methods that
can overcome this limitation are particularly attractive for surface
wave analysis, such as genetic algorithms [35,36], simulating annealing
[37–39], and Monte Carlo [40–42].

Nature has always been an inspiration source for scientists.
Mirjalili et al. conceived the idea of mimicking the social leader-
ship hierarchy and hunting behavior of grey wolves into optimiza-
tion problems and called the resulting technique as Grey Wolf
Optimizer (GWO) [43]. GWO, a newcomer among population-
based swarm intelligence optimization algorithms, is character-
ized by several appealing advantages: simplicity, flexibility,
derivation-free mechanism, and local optima avoidance. Also, it
is easy to implement; and it has fewer control parameters to
adjust, and it has a fast convergence characteristic.

First, GWO is fairly simple. It is inspired from the particular
leadership hierarchy and hunting behavior of grey wolves in
nature. The simplicity allows computer scientists to simulate
natural concepts and develop the algorithm more effectively.
Moreover, the simplicity assists other scientists to learn the
algorithm quickly and apply it to their problems. Second, flexibility
refers to the applicability of GWO to different problems without
any special changes in the structure of the algorithm. GWO is
readily applicable to different problems since it assumes problems
as black boxes. Third, GWO has derivation-free mechanisms. In
contrast to gradient-based optimization approaches, GWO opti-
mizes problems stochastically. It can be effectively used for
addressing problems for which objective functions are non-differ-
entiable, stochastic, or even discontinuous. Finally, GWO has
superior abilities to avoid local optima compared to conventional
optimization techniques. This makes GWO highly suitable for
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solving highly nonlinear, multivariable, multimodal function opti-
mization problems.

Mirjalili et al. [43] have recently tested GWO on unimodal, multi-
modal, fixed-dimension multimodal, and composite functions to
benchmark its performance in term of exploration, exploitation, local
optima avoidance, and convergence. It has been shown that the GWO
algorithm is able to provide very competitive results compared to
other well-known meta-heuristics. The GWO algorithm has been
successfully applied to three classical engineering design problems
and real optical engineering [43]. Song et al. [44] have successfully
applied GWO for solving combined economic emission dispatch
problems. Emary et al. [45] have used GWO for feature subset
selection. Mirjalili [46] has investigated the effectiveness of GWO in
training multi-layer perceptions (MLP). Saremi et al. [47] proposed the
use of evolutionary population dynamics (EPD) in the GWO algorithm
to further enhance its performance. Mirjalili et al. [48] have compared
GWO with Multi-Verse Optimizer (MVO). Results from both applica-
tions and investigations show that the GWO algorithm has the
superior performance not only in terms of exploring the promising
regions extensively but also in terms of exploiting the optimum.

Although there are a lot of population-based algorithms in the
literature, the operators of algorithms are usually designed to accom-
plish two phases [48]: exploration versus exploitation. In the former
phase, an algorithm should be equipped with mechanisms to explore
the search space as extensively as possible. In fact, promising regions
of the search space are identified in this phase. In the exploitation
phase, however, there should be emphasizes on local search and
convergence towards promising areas obtained in the exploration
phase. Exploration and exploitation are two conflicting stages with no
specific mathematical definition. The majority of population-based
algorithms have been tuned adaptively to smoothly transit between
exploration and exploitation. For instance, the inertia weight in PSO is
mostly decreased linearly from 0.9 to 0.4 in order to emphasize
exploitation as iterations increase. However, there is no mechanism for
significant abrupt movements in the search space for PSO and this will
likely result in the poor performance of PSO. Therefore, finding a good
balance between exploration and exploitation when designing an
algorithm is challenging. There is no clear rule for an algorithm to
realize the most suitable time for transiting from exploration to
exploitation due to both unknown shape of search spaces and
stochastic nature of population-based algorithms. This is the reason
why current multi-solution stochastic optimizers still prone to local
optima stagnation. Parameter estimation in surface waves is consid-
ered as a challenging problem due to its high nonlinearity and to its
multimodality. It has been proven that GWO shows a good balance
between exploration and exploitation that results in high local optima
avoidance and a very fast convergence simultaneously. Therefore, the
high level of exploration and exploitation that may assist GWO to
outperform other optimizers in this field motivates our attempts to
investigate its efficiencies in parameter estimation in surface waves.

In this study, we demonstrate a GWO application on surface wave
data for near-surface S-wave velocity profiles. The proposed procedure
is tested on noise-free, noisy, and field data. Furthermore, the results of
the GWO algorithm are compared to GA, PSOGSA, and local search
algorithm to further verify the performance of GWO. Results from both
synthetic and field data demonstrate that GWO has the high level of
exploration and exploitation that result in high local optima avoidance
and a very fast convergence simultaneously in parameter estimation in
surface waves.

2. Grey Wolf Optimizer (GWO)

The social hierarchy and the hunting behavior of grey wolves
are mathematically modeled by Mirjalili et al. [43] in order to
design GWO.

2.1. Social hierarchy

Grey wolf belongs to Canidae family. Grey wolves are consid-
ered as apex predators, meaning that they are at the top of the
food chain. Grey wolves mostly prefer to live in a pack. Of
particular interest is that they have a strict social dominant
hierarchy from alpha, beta, delta, to omega.

In order to mathematically model the social hierarchy of grey
wolves when designing GWO, the fittest solution is considered as
the alpha (α). Consequently, the second and third best solutions
are named as the beta (β) and the delta (δ), respectively. The rest of
the candidate solutions are assumed to be the omega (ω). In the
GWO algorithm, the hunting (optimization) is guided by α, β, and
δ. The ω wolves follow these three wolves.

2.2. Encircling prey

In addition to the social hierarchy of grey wolves described
above, group hunting is another interesting social behavior of grey
wolves. According to Muro et al. [50], the main phases of grey wolf
hunting include: (1) Tracking, chasing, and approaching the prey;
(2) Encircling, pursuing, and harassing the prey until it stops
moving; (3) Attacking towards the prey. In order to mathemati-
cally model encircling behavior, the following equations are
proposed [43]:

D¼ jC UXpðtÞ�XðtÞj ð1Þ

Xðtþ1Þ ¼ XpðtÞ�AUD ð2Þ
Where t indicates the current iteration; A and C are coefficient
vectors; Xp is the position vector of the prey; and X indicates
the position vector of a grey wolf. The coefficient vectors
A¼ aU ð2r1�1Þ and C ¼ 2r2. where a is linearly decreased from
2 to 0 over the course of iterations;r1,r2 are random values in [0,1];
so A is random values in the interval ½�a; a�.

2.3. Search for prey (exploration)

Grey wolves mostly search according to the position of the
alpha, beta, and delta. They diverge from each other to search for
prey and converge to attack prey. In order to mathematically
model divergence, A is utilized with random values greater than
1 or less than �1 to oblige the search agent to diverge from the
prey. This emphasizes exploration and allows GWO to search
globally. That is, jAjZ1 forces the grey wolves to diverge from
the prey to hopefully find a fitter prey.

Another component of GWO that favors exploration is C. The C
vector contains random values in [0, 2]. This component provides
random weights for prey in order to stochastically emphasize
(CZ1) or deemphasize (Co1) the effect of prey in defining the
distance in Eq. (1). This assists GWO to show a more random
behavior throughout optimization, favoring exploration and local
optima avoidance. It is worth mentioning that C is not linearly
decreased in contrast to A. GWO deliberately requires C to provide
random values at all times to emphasize exploration/exploitation
not only during initial iterations but also final iterations. This
component is very helpful in case of local optima stagnation,
especially in the final iterations.

2.4. Attacking prey (exploitation)

In order to mathematically model approaching the prey, the
value of a is linearly decreased. Thus A is a random value in the
interval ½�a; a�. When random values of A are in [-1,1] (jAjo1),
GWO forces the wolves to attack towards the prey.

X. Song et al. / Soil Dynamics and Earthquake Engineering 75 (2015) 147–157148



Download English Version:

https://daneshyari.com/en/article/303963

Download Persian Version:

https://daneshyari.com/article/303963

Daneshyari.com

https://daneshyari.com/en/article/303963
https://daneshyari.com/article/303963
https://daneshyari.com

