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a b s t r a c t

A semi-analytical method is developed to analyze the plane strain dynamic response of a transversely
isotropic multilayered half-plane subjected to a time-harmonic surface or buried load. On the basis of
the governing equations of motion in Cartesian coordinates, the analytical layer-elements of a single
layer with a finite thickness and a half-plane are obtained through the Fourier transform and the
corresponding algebraic operations. The analytical layer-element solution for the multilayered half-plane
in the transformed domain can be derived in combination with the continuity conditions between two
adjacent layers. After the boundary conditions are introduced, the corresponding solution in the
frequency domain is recovered by the inverse Fourier transform. The comparison with an existing
solution for an isotropic half-plane confirms the accuracy of the proposed method. Several examples are
given to portray the influence of material anisotropy, the depth of external load, material stratification
and the frequency of excitation on the vertical displacement and vertical normal stress.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The research of dynamic response problems is of great impor-
tance to the studies related to elastic wave propagation in soils
caused by external loadings such as transportation, machine and
pile driving. As the pioneer, Lamb [1] first studied the response of
an isotropic elastic half-space subjected to a time-harmonic sur-
face load. The follow-up studies for dynamic response problems
dealing with an isotropic half-space or full-space can be seen in
references (Achenbach [2], Miklowitz [3], Pak [4], Pak and Ji [5],
Guzina and Pak [6], etc.). Scholars (Aspel and Luco [7], Pak and
Guzina [8], Xu et al. [9], etc.) got analytical solutions for dynamic
response of an isotropic multilayered half-space.

However, soils in geotechnical engineering are generally trans-
versely isotropic due to long-term sedimentation processes. Many
researches, as in Pan and Chou [10,11], Yue et al. [12], Liao and
Wang [13], and Wang and Liao [14] provided fundamental solu-
tions for a transversely isotropic half-space subjected to different
kinds of static loadings. Apart from transversely isotropy, soils also
take on the phenomenon of layering. Solutions for a transversely
isotropic multilayered medium under static loads can be found

in references (Small and Booker [15,16], Singh [17], Pan [18,19], Ai
et al. [20], etc.). Therefore, it is more realistic to regard soils as a
transversely isotropic multilayered medium and to study theirs
dynamic response problems.

Regarding the dynamic response of a transversely isotropic
medium, Stoneley [21] was the earliest researcher focusing on
wave propagation in a transversely isotropic medium. Synge [22]
and Buchwald [23] studied the propagation of Rayleigh waves in a
transversely isotropic medium. Payton [24] presented a time
domain solution for displacements and stresses in a transversely
isotropic full-space loaded by an instantaneously applied point
force. Later, Payton [25] summarized the dynamic problems of a
transversely isotropic elastic half-space under surface loads in his
book published in 1983. Rajapakse and Wang [26,27] gave out the
Green’s functions for a 2-D transversely isotropic half-plane and a
non-axisymmetrical transversely isotropic half-space subjected to
an interior time-harmonic load. The 3-D time harmonic Green’s
function for a transversely isotropic medium was given by Zhu
[28] and Yang et al. [29], respectively. Eskandri-Ghadi [30] intro-
duced two potential functions as a general solution for a trans-
versely isotropic medium. With the aid of the potential functions
presented by Eskandri-Ghadi [30], Rahimian et al. [31] and
Khojasteh et al. [32,33] achieved more subsequent studies in
dynamic response problems of a transversely isotropic medium.

As for a multilayered system, Khojasteh et al. [34] used the
method of displacement potentials to obtain 3-D dynamic Green’s

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/soildyn

Soil Dynamics and Earthquake Engineering

http://dx.doi.org/10.1016/j.soildyn.2015.04.010
0267-7261/& 2015 Elsevier Ltd. All rights reserved.

n Correspondence to: Department of Geotechnical Engineering, College of Civil Engineer-
ing, Tongji University, 1239 Siping Road, Shanghai 20092, China. Tel.: þ86 21 65982201;
fax: þ86 21 65985210.

E-mail address: zhiyongai@tongji.edu.cn (Z.Y. Ai).

Soil Dynamics and Earthquake Engineering 75 (2015) 211–219

www.sciencedirect.com/science/journal/02677261
www.elsevier.com/locate/soildyn
http://dx.doi.org/10.1016/j.soildyn.2015.04.010
http://dx.doi.org/10.1016/j.soildyn.2015.04.010
http://dx.doi.org/10.1016/j.soildyn.2015.04.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.soildyn.2015.04.010&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.soildyn.2015.04.010&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.soildyn.2015.04.010&domain=pdf
mailto:zhiyongai@tongji.edu.cn
http://dx.doi.org/10.1016/j.soildyn.2015.04.010


functions in a two-layered transversely isotropic half-space.
Later, they [35] extended the 3-D dynamic Green’s functions to a
transversely isotropic multilayered medium. Ai et al. [36], Ai and Li
[37] utilized the analytical layer-element method to derive
the solutions for a transversely isotropic multilayered half-space
under vertical and horizontal time-harmonic loads, respectively.
From above, it can be found that most of the researches concern
about a transversely isotropic half-space, while the researches of a
multilayered system, especially the ones in Cartesian coordinates,
are quite limited. In practical engineering, strip foundations, emb-
ankments and dams are generally considered as the plane strain
problems, which is more suitable for Cartesian coordinates rather
than cylindrical coordinates, therefore the dynamic response of a
multilayered transversely isotropic medium in Cartesian coordi-
nates should receive more attention.

The purpose of this paper is to extend the analytical layer-
element method to solve the plane strain dynamic response of a
transversely isotropic multilayered half-plane subjected to a time-
harmonic surface or buried load. Compared with the work of Refs.
[34,35], the presented method only involves negative exponentials
functions in the stiffness matrices of soils, which not only simp-
lifies the calculation processes but also improves the numerical
efficiency and stability. With the application of the Fourier trans-
form and the corresponding algebraic operations, the analytical
layer-elements which describe the relationship between stresses
and displacements of a single layer with a finite thickness and a
half-plane are obtained. According to the continuity conditions
between adjacent layers, the global stiffness matrix equation is
further achieved. After the boundary conditions are introduced,
the solution in the frequency domain is achieved by taking the
inversion of the Fourier transform. Selected numerical results are
performed to demonstrate the accuracy of present method, and to
discuss the influence of material anisotropy, material stratification,
the depth of load and the frequency of excitation.

2. The analytical layer-elements for a single layer and a half-
plane

In a Cartesian coordinate system, defined that the z-axis is
normal to the plane of isotropy, the governing equations of motion
in the absence of body forces for an elastic body can be expressed
as follows:

∂σx

∂x
þ∂τxz

∂z
¼ ρ

∂2ux

∂t2
ð1aÞ

∂τxz
∂x

þ∂σz

∂z
¼ ρ

∂2uz

∂t2
ð1bÞ

where σx and σz represent the normal stress components in the x
and z directions, respectively; τxz stands for the shear stress com-
ponent in the planes xz; ux and uz are the displacement compo-
nents in the x and z directions, respectively; ρ denotes the density
of the material; t is the time variable.

The constitutive equations of a transversely isotropic body,
which have five independent elastic parameters, can be written in
terms of displacements as follows:
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∂ux

∂x
þc13
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∂ux
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∂uz
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where c11 ¼ λnð1�nμ2
vhÞ, c12 ¼ λnðμhþnμ2

vhÞ, c13 ¼ λnμvhð1þμhÞ,
c33 ¼ λð1�μ2

hÞ and c44 ¼ Gv are the five independent elastic para-
meters, in which n¼ Eh=Ev, λ¼ Ev=½ð1þμhÞð1�μh�2nμ2

vhÞ�. Here,
Ev, Eh and Gv are the vertical Young’s modulus, horizontal Young’s
modulus and shear modulus, respectively. In addition, μvh and μh
are Poisson’s ratios characterizing horizontal strain due to parallel
and normal stresses acting on the plane, respectively.

We assume the load is time-harmonic with the circular fre-
quency ω, so the displacement components may express in the
form of uxðx; z; tÞ ¼ uxðx; zÞeiωt and uzðx; z; tÞ ¼ uzðx; zÞeiωt , and the
harmonic time factor eiωt is suppressed.

Substitution of Eqs. (2) into Eqs. (1) leads to the following
equations:
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The integral transformation approaches are employed to red-
uce the partial differential equations mentioned above into ord-
inary differential equations. According to Sneddon [38], a Fourier
integral transform is taken. The Fourier transform with respect to
the variable x and its inversion are defined as

ðux;uz;σz; τxzÞ ¼ 1
2π

Z þ1

�1
ðiux;uz;σz; iτxzÞe�iξxdx ð4aÞ
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Z þ1

�1
ð� iux;uz;σz; � iτxzÞeiξxdξ ð4bÞ

where ξ is the Fourier transform parameter with respect to the
variable x, and i¼

ffiffiffiffiffiffiffiffi
�1

p
.

Eqs. (3) are treated by the Fourier transform Eq. (4a), then we
have:

ρω2�ξ2c11þc44
d2

dz2

 !
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Eqs. (5) may be recast into:
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In order to simplify the analysis, several variables are defined as
follows:

W ξ; z
� �¼ U ξ; z

� �
;U

0
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ð7aÞ
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� �
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;
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� �
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With the aid of Eqs. (7), Eqs. (6) take the following form:

dW ξ; z
� �
dz

¼AðξÞW ξ; z
� � ð8Þ
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