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a b s t r a c t

The consideration of highly irregular topography or heterogeneities and singularities in the domain are
necessary for solving a wide variety of seismic problems, e. g. earthquake site studies. Therefore, the use of
a meshless method (MM) with the possibility of employing an irregular grid point distribution can be of
interest for modeling this kind of problems. The tradition of using Finite Different Methods for modeling
seismic wave propagation problems have allowed researches to solve it and, in fact, a numerical model
using the geotechnical calculation software FLAC has been used here to validate the results. It is clear the
improvement of using meshless method techniques to incorporate irregularities in a natural way.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

During recent years, meshless methods have emerged as a class
of effective numerical methods which are capable of avoiding the
difficulties encountered in conventional computational mesh-
based methods. An important path in the evolution of meshless
methods has been the development of the Generalized Finite
Difference Method (GFDM), also called meshless finite difference
method [1]. The bases of the GFDM were published in the early
seventies. Jensen [2] was the first author to introduce a fully
arbitrary mesh. He considered Taylor's series expansions inter-
polated on six-node stars in order to derive the Finite Difference
(FD) formulae, approximating derivatives of up to the second
order. Perrone and Kao [3] suggested that additional nodes in the
six-point scheme should be considered and an averaging out
process for the generalization of finite difference with coefficients
applied. The idea of using an eight node star and weighting
functions, to obtain finite difference formulae for irregular meshes,
was first put forward by Liszka and Orkisz [4] using moving least
squares (MLS) interpolation, and an advanced version of the GFDM
was given [1]. Benito et al. [5] studied the dependency of solution
of the Generalized Finite Difference Method on the number of
nodes in the cloud, the relative coordinates of the nodes with

respect to the star node and on the weight function employed. An
h-adaptive method in GFDM is described in [6–8].

The application of GFDM to the solution of the problem of
seismic wave propagation using PML absorbing boundary was
introduced by Ureña et al. [9]. These authors have also applied this
meshless method to the solution of dynamic problems of beams
and plates [10], to solve the advection–diffusion equation [11] and
to solve parabolic and hyperbolic equations [12].

Absorbing boundary condition must be used in numerical wave
problems to truncate unbounded media without the reflection due
to numerical boundaries, and Perfectly Matched Layer (PML) is one
of the most effective among them. This method has been widely
used for Finite Differences Methods (FDM).

Berenger [13] first created a PML for electromagnetic problems
in a Finite Element (FE) numerical model. Their equations are
based on a field splitting which results in mathematical expres-
sions that can not be easily manipulated. Chew and Weedou
(1994), following Berenger's work, introduced the concept of using
complex coordinates in the formulation. Sacks et al. (1995)
developed an anisotropic PML also valid to the Finite Element
Method (FEM).

Chew and Liu [14] first proposed the PML for elastic waves in solids
and proved that reflections are null in a regular elastic medium. PML
has become very successful in many fields, and in the context of wave
propagation: the PML has been applied to acoustic by Qi and Geers
(1998), Hagstrom (1999), Liu and Tao (1997) and Kormann et al. (2008)
to underwater acoustic propagation models; it has been applied to
wave propagation in poroelastic media by Zeng and Huang [15]; to
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elastic problems by Colino and Monk (1998), Colino and Tsogka [16],
Basu and Chopra [17]; FE applied to classical soil-structure interaction
problems in the frequency domain, Cohen and Fauqueux (2003) and
with a FDM scheme Moczo et al. [18], Kirsch [19], Skelton et al. [20],
Johnson [21], and for wave equation written as a second-order system
in displacements by Komatitsch and Tremp [22] and Benito et al. [23].

This paper shows the application of GFDM to solve these kinds
of problems. The scheme used and the analyses of stability and
dispersion have been clearly referenced. The use of PML absorbing
boundary conditions in the model is also explained and the
influence of the loss profile is shown. Finally, the efficiency of the
method in solving a variation of Lamb's problem on a domain with
a simple topographical feature is illustrated as well as another one
including a hole.

2. Explicit generalized differences schemes for the seismic
wave propagation problem: second order formulation

The equations of motion for a perfectly elastic, homogeneous,
isotropic medium in the domain ΩCR2 are

ρUi;tt ¼ ðλþμÞUj;jiþμUi;kk ð1Þ

where Ui are the components of the displacement, ρ is the density,
λ and μ are the Lamé elastic coefficients.

In this paper three types of boundary conditions are con-
sidered: homogeneous, Dirichlet boundary conditions, free surface
and, in some cases, a symmetry.

On the free surface the following conditions are imposed

σijnj ¼ ðλ εkkδijþ2μεijÞnj ¼ giðtÞ3 λ Uk;kδijþμ Ui;j
��

þUj;i
��
nj ¼ gi tð Þ ð2Þ

where giðtÞ is equal to zero when there are no forces on the surface.
The aim is to obtain explicit linear expressions for the

approximation of partial derivatives at the points of the domain.
First of all, an irregular grid or cloud of points is generated in the
domainΩ[Γ, where Γ is the boundary of the domain. On defining
the central node with a set of nodes surrounding that node, the
star then refers to a group of established nodes in relation to a
central node. Every node in the domain has an associated star
assigned to it. This scheme uses the central-difference form for the
time derivative.

Following [1,5,6,8,10], the explicit finite difference formulae for
the second spatial derivatives with second and fourth order
approximation (p¼2, 4) for the spatial derivatives are obtained

½U0
i;jk�t ¼ nΔt ¼ �m0;p

jk
nu0

i þ
XN
l ¼ 1

ml;p
jk

nul
i þΘ½ðhiÞp� ð3Þ

where capital letters are used for exact values and small letters are
used for approximated values. The superscript n denotes the time
step, the superscripts 0 and l refer to the central node and the rest
of star's nodes respectively, N is the number of nodes in the star (in
this work, for the second order approximation N¼8 and the star
nodes are selected by using the distance criteria [3], and the fourth
order approximation N¼30 and the star nodes are selected by
using the distance criteria) and hl

i ¼ xli�x0i .
m0;p

jk are the coefficients that multiply the approximate values
of the functions Ui at the central node (nu0

i ) for the time nΔt in the
generalized finite difference explicit expressions for the space
derivatives.

ml;p
jk are the coefficients that multiply the approximate values of

the functions Ui at the other nodes of the star (nul
i ) for the time

nΔt in the generalized finite difference explicit expressions for the
space derivatives. In all these expression the cross-terms are equal.

The replacement in Eq. (1) of the explicit expressions obtained
for the spatial derivatives and the central-difference formula for
the time derivatives, leads to the explicit difference scheme
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Imposing boundary conditions is not difficult except for the
case of free surface. The values of the function in the nodes of the
free surface are unknown but free surface conditions Eq.(2) are
known. If Use

i are the displacements of the nse added nodes
(Newmann nodes) that belong to a star being Us

i the displacement
in its central node and Usi

i the displacements of the remaining nsi
nodes of the star. Substituting the first order derivatives that
appear in the free surface condition Eq. (2) by the explicit
expressions Eq. (3) the system of 2n equations is obtained
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where N¼nseþnsi and the 2n unknowns are the displacements in
the n added nodes. These unknowns appear in the summation. By
solving this system, the function values ðnuse

i Þ are obtained on the
n added Neumann nodes at the time t¼nΔt.

As an explicit method is being used, the stability has been stu-
died and the star stability condition has been obtained in [9]. In this
paper, the condition for stability of the star has been established as:

Δto
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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where

α¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λþ2μ
ρ

s
; β¼

ffiffiffi
μ
ρ

r

are the velocities of P and S waves respectively.
The dispersion for the phase and group velocities has also been

studied in depth in [9].

3. Benchmark test

To analyse the obtained approximation, the method has been
applied to the solution of Eq. (1) in a square of unitary length. We
have used models with 441 and 1681 nodes, Young's modulus
λ¼0.5, a shear modulus μ¼0.25, a density ρ¼1 and Dirichlet
boundary conditions at every side. The exact solution is

Uxðx; y; tÞ ¼ cos
ffiffiffiffiffi
2μ
ρ

q
t

� �
sin x sin y

Uyðx; y; tÞ ¼ cos
ffiffiffiffiffi
2μ
ρ

q
t

� �
cos x cos y

8><
>: ð7Þ

Fig. 1 shows the exact solution and the values obtained using
the GFD scheme at the node with coordinates (0.5, 0.5) for 500
time steps that are equivalent to 0.5 s. The solution has been
obtained with the schemes with second and fourth order
approximation for the space second order derivatives.

To validate the results obtained by the application of the GFDM
a numerical model using the geotechnical calculation software
FLAC [24] is done. An elastic medium of horizontal dimension, in
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