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a b s t r a c t

The hinged connection and periodic structure are introduced to the classic beam–foundation systems, so
called as hinged periodic beam–foundation systems, to reduce the flexural vibrations. The cell-hinged,
segment-hinged and identically hinged periodic beam–foundation systems are proposed. The frequency
dispersion relation and frequency response of these systems with soil foundation are calculated and
analyzed. The study shows that, the existence of hinges helps greatly to obtain lower and wider band
gaps (BGs) with stronger attenuation. Finally, a combination beam–foundation system composed by the
cell-hinged and identically hinged periodic structures is proposed to obtain super wide BG.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Lots of harmful vibrations from soil foundation induced by
earthquake, blasting, machine, traffic, pile driving, etc. would
cause resonance, failure, disturbance of sensitive equipment and
discomfort to people [1]. These vibrations generally have low
frequency ranges. For example, the frequency range of earthquake
is lower than 20 Hz, that of the railway induced vibrations which
cause disturbance of sensitive equipment and discomfort to peo-
ple is 1–80 Hz, while its re-radiated noise has the frequency range
of 16–250 Hz [2]. How to effectively eliminate and control these
vibrations is the continuously considered problem. Several coun-
termeasures have been presented, such as adjusting the frequency
contents of sources [3], adding dampers on sources or structures
[4], installing wave barriers on propagation path between sources
and receivers [5]. Concerning the wide applications such as rail-
road tracks [6–8], highway pavements [9–11] and continuously
supported pipelines [12–14], how to eliminate the vibrations of
beam–foundation systems is a meaningful topic.

In recent years, the phononic crystals (PCs) which have peri-
odically arrayed composite materials have caused much attention
[15–18]. Researchers have been attracted mainly because of the
existence of band gaps (BGs), within which there can be no pro-
pagation of elastic waves in PCs. The feature is of interest for

potential applications such as acoustic insulation [15] and vibra-
tion control [19,20], etc. The introduction of periodic structures to
beam–foundation systems is a possible way to eliminate and
control vibrations in such systems, by using the BG properties.

In our previous research [21], the periodic beam–foundation
systems from introducing the periodicity into beams are pre-
sented. Yu et al. also studied such systems [22]. The results show
good BG properties. Note that the relevant studies usually focus on
the rigid connected periodic beam–foundation system while the
influence of the connection method in beam–foundation system is
rarely discussed. We notice that in the two dimensional lattice
grids and one dimensional homogeneous beam, the BG range and
other properties could be changed with hinged connections,
compared with the rigid connected case [23–25]. Thus, we try to
introduce the hinged connection and PCs simultaneously into one
dimensional case, in order to give more choice for BG design in
applications.

The beam–foundation system makes it possible to replace rigid
connections into hinges. Because for beam–foundation systems,
unlike the normal beam, the support of foundation gives extra
constraints, which makes the connection type affect the normal
usage of systems little. Replacing the rigid connections by hinges
in certain periodic mode supplies a new idea to introduce peri-
odicity into the rigid connected periodic beam–foundation sys-
tems or normal beam–foundation systems for vibration elimina-
tion and control, following the studies of the common rigid con-
nected periodic beam–foundation system [22,23]. Generally,
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beam–foundation systems could be simplified as the model of
beams on elastic foundations. Winkler model [26,27] is an
appropriate elastic foundation model and often adopted. The
model could describe many structures such as railroad tracks,
highway pavements, continuously supported pipelines, by using
different foundation parameters.

In this note, we first define three kinds of hinged periodic
beam–foundation systems to eliminate and control flexural
vibrations. Then the frequency dispersion relation and frequency
response of these systems with soil foundation are calculated and
analyzed. Finally, from the combination of different hinged struc-
tures, a multi-hinged periodic beam–foundation system with
super wide BG started from 0 Hz can be proposed conveniently.

2. Models of hinged periodic beam–foundation systems

Fig. 1(a) shows a homogeneous Euler–Bernoulli beam on aWinkler
foundation. The length, width and height of the beam are l, b and h. In
the Winkler model, only one parameter c is needed to represent the
stiffness of foundation [26,27]. Fig. 1(b) shows a cell of the rigid con-
nected periodic beam anchored on a Winkler foundation. The beam
consists of an infinite repetition of alternating segment with different
material and length arrayed along the x direction. The periodic length
is a. Fig. 1(c) shows a similar model as that in Fig. 1(b). The difference is
that the former rigid connections between different cells are replaced
by hinges. So we get the cell-hinged periodic beam–foundation sys-
tem. Besides the cell-hinged case, all of the rest rigid connections
shown in Fig. 1(c) could also be replaced by hinges. Then we get the
segment-hinged periodic beam–foundation systemwhich is shown in
Fig. 1(d). Actually, these two hinged beam–foundation systems contain
two kinds of periodicities or more, which are the periodicity of
material arrangement and the hinged position. If the periodicity of
material arrangement is considered only, the rigid connected periodic
beam–foundation system is obtained. While we just consider the

periodicity of hinged position, we get the identically hinged periodic
beam–foundation system, which is shown in Fig. 1(e).

Based on the transfer matrix method for the calculation of the
frequency dispersion relation of the rigid connected periodic
beam–foundation system [21,28], at each cross-section, the rigid
connected case has four degrees of freedom (DOFs), which are the
amplitude of the displacement v(x), rotation angle θ(x), flexural
moment M(x) and shear force Q(x). The general transfer relation
can be written as

FðaÞ ¼ TFð0Þ; ð1Þ
where F(x)¼[v(a) θ(a) M(a) Q(a)]T, F(0)¼[v(0) θ(0) M(0) Q(0)]T.

However, the flexural moment could not pass over a hinge and
the rotation angles of the beams around a hinge are also not
continuous anymore. So the DOFs become to just the displacement
and shear force, for the hinged beam–foundation systems.
Applying these two conditions, the transfer relation can be
rewritten as

F0 ðaÞ ¼ T0F0 ð0Þ; ð2Þ
where F0(x)¼[v(a) Q(a)]T, F0(0)¼[v(0) Q(0)]T.

The fourth-order eigenvalue problem which contains the dis-
persion relation of the rigid connected periodic beam–foundation
system could be easily changed to the second-order eigenvalue
problems which contain the dispersion relations of the cell hinged,
segment-hinged and identically hinged periodic beam–foundation
systems, after using the Bloch's theorem [25].

3. Results and discussion

3.1. Band gaps

We consider the periodic beam constructed from aluminum
and epoxy resin on a Winkler foundation with the stiffness of
25.0�106 N/m3 which could represent a soil foundation. The
periodic length a¼0.15 m. The geometrical parameters of the
aluminum segment and epoxy resin segment in a cell are the
same. The length and cross-section size of each homogeneous
segment are 0.075 m and 0.01 m�0.01 m respectively. So we can
analyze the rigid connected, cell-hinged and segment-hinged
cases. Then, we consider the aluminum beam–foundation system
with the same cross-section size and lattice constant to analyze
the identically hinged case. The density and elastic modulus of
aluminum are ρAl¼2730 kg/m3, EAl¼7.76�1010 Pa, and these of
epoxy resin are ρEp¼1180 kg/m3, EEp¼4.35�109 Pa.

The frequency dispersion relations of flexural vibrations in the
range of 0–3200 Hz for the four cases are shown in Fig. 2. The
wave number kA[�2π/a, 2π/a]. For the rigid connected case, there
are three BGs, which are 0–180.0 Hz, 440.9–600.8 Hz and 1752.2–
3023.5 Hz. For the cell-hinged case, there are also three BGs, which
are 0–179.2 Hz, 179.8–479.6 Hz and 917.7–2561.9 Hz. For the
segment-hinged case, there are four BGs, which are 0–164.5 Hz,
179.8–180.0 Hz, 200.0–1765.5 Hz and 2107.1–3200.0 Hz. For the
identically hinged case, there are two BGs, which are 0–1085.3 Hz
and 2440.4–3200.0 Hz.

We also calculate the frequency response of the flexural
vibration for the 6-cell periodic structures of the four cases based
on the finite element method, which is also shown in Fig. 2, to
verify the theoretical results. We apply the harmonic displacement
impulse which sweeps over 0–3200 Hz to one end of the beam,
and then get the frequency response at the other end. The distinct
attenuation frequency ranges correspond to the BGs. The rigid
connected, cell-hinged and segment-hinged cases all give three
BGs. For the rigid connected case, they are 0–184.9 Hz, 411.7–
591.9 Hz and 1686.9–2984.8 Hz. For the cell-hinged case, they are

Fig. 1. (a) A homogeneous beam on a Winkler foundation. The cells of (b) the rigid
connected, (c) cell-hinged, (d) segment-hinged and (e) identically hinged periodic
beam–foundation systems.
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