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a b s t r a c t

The transient analysis of dam–reservoir systems by employing perfectly matched layers has been
investigated. In previous studies, boundary conditions of the PML region in the reservoir have been
neglected. In this paper, they are incorporated completely in the formulation. Moreover, a technique is
introduced to involve the effect of incident waves caused by vertical ground motions at the reservoir
bottom in the analysis. Performing several numerical experiments indicates that applying boundary
conditions of the PML domain and utilizing the proposed method for vertical excitation cases reduce the
computational cost significantly and make the PML method a very efficient approach for the transient
analysis of dam–reservoir systems.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Physicists and engineers have been seeking reliable approaches to
analyze processes involving wave motions for decades. Particularly,
one encounters acoustic waves propagating in a semi-infinite med-
ium in the transient analysis of dam–reservoir systems (Fig. 1).
In numerical models of such systems, acoustic finite elements are
utilized to discretize the near field part of the reservoir adjacent to
the dam body (with irregular geometry). Meanwhile, researchers
have suggested many approaches such as hyper-elements [1],
rational boundary conditions [2,3], Dirichlet to Neuman mappings
[4], the boundary element method [5], the scaled boundary element
method [6] and high order non-reflecting boundary conditions [7] to
take into account the propagation of acoustic waves towards infinity
in the analysis. Nevertheless, finding methods for applying the
radiation condition as thoroughly and efficiently as possible is still
the purpose of many investigations. The present study is focused on
utilizing perfectly matched layers in the transient dynamic analysis of
dam–reservoir systems.

A perfectly matched layer is an absorbing layer which can
absorb propagating waves perfectly if it is defined properly.
Berenger (1994) introduced perfectly matched layers for solving
unbounded electromagnetic problems with the finite-difference
time-domain method [8]. Hasting seems to be the first researcher

who used perfectly matched layers in problems including elastic
waves [9]. He split potential functions corresponding to primary
and secondary waves and utilized a finite-difference time-domain
(FDTD) approach to solve the resultant equations in 2D domains.
Chew et al. introduced a change of variables to transform
Maxwell0s equations in PML media into ordinary-looking
Maxwell0s equations in a complex coordinate system. They indi-
cated that many existing closed-form solutions can be easily
mapped into solutions in these complex coordinate systems [10].
Chew and Liu employed complex coordinates to define perfectly
matched layers and showed that the resultant medium could
absorb propagating waves [11]. Issac Harari et al. presented a finite
element formulation to use PML in time harmonic analysis of
acoustic waves in exterior domains [12]. Collino and Tsogka
indicated how to establish a PML model using the split-field
approach for a general hyperbolic system. They implemented their
theory to the linear elastodynamic problem in an anisotropic
medium [13]. Zeng et al. extended the PML to truncate unbounded
poroelastic media for numerical solutions using a finite-difference
method. They adopted the method of complex coordinates to
formulate the PML for poroelastic media [14]. Zheng and Huang
developed anisotropic PML for elastic waves in Cartesian, cylind-
rical and spherical coordinates. Their formulation avoided field
splitting and could be used in the FEM directly, and in the FDTD
method too [15]. Becache et al. investigated well-posedness and
stability of using perfectly matched layers for anisotropic elastic
waves from a theoretical point of view [16]. Basu and Chopra
defined perfectly matched layers by employing complex coordi-
nates to solve time harmonic elastodynamic equations by finite
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element implementation [17]. Furthermore, they transformed the
frequency domain equations into time domain and presented an
approach to solve the resultant equations [18,19]. Katsibas and
Antonopoulos implemented a FDTD-PML technique to solve stress–
velocity acoustic equations. They derived general PML equations
governing both lossless and lossy media. Moreover, they used the
stretched coordinates idea to introduce further dissipation into the
PML area [20]. Rylander and Jin developed a formulation for PML to
solve Maxwell0s equations by finite element method. They trans-
formed frequency dependent Maxwell0s equations into time domain
and introduced a special time stepping scheme to solve the resultant
equations [21]. Appelo and Kreiss utilized the formulation of a modal
PML to the equations of linear elasticity. They indicated that their
PML model has better stability properties than previous split-field
models [22]. Issac Harari et al. conducted a parametric study on PML
used in the time harmonic analysis of elastodynamics in an
unbounded region by the finite element method and presented
some guidelines for choosing PML parameters [23]. Shuo Ma and
Pengcheng Liu presented an easy implementation of perfectly
matched layers (PML) in the explicit finite element method by using
the one-point integration scheme [24]. Qin et al. introduced auxiliary
variables to divide the PML wave equation in the frequency domain
into two parts: normal terms and attenuated terms. Using the
auxiliary variables, they avoided convolution operations in equations
after transforming them into time domain and utilized the finite
difference method to propose a novel numerical implementation
approach for PML absorbing boundary conditions with simple
calculation equations, small memory requirements, and easy pro-
gramming [25]. Liu et al. utilized the Crank–Nicolson scheme
together with several algorithms to calculate the first-order spatial
derivatives of the SH wave equations. Furthermore, they investigated
how the absorbing boundary width and the algorithms affect the
PML results of a homogeneous isotropic medium and a multi-layer
medium with a cave [26]. Seungil Kim and Joseph E. Pasciak
developed a Cartesian perfectly matched layer for solving Helmholtz
equation on an unbounded domain in 2D space [27]. Giovanni
Lancioni compared the performance of the PML approach and high
order non-reflecting boundary conditions in a one dimensional
dispersive problem and expressed their merits and drawbacks [28].

In the analysis of a dam–reservoir system by perfectly matched
layers, the bounded part of the reservoir is discretized by common
finite elements and a PML region is modeled to absorb waves
propagating towards infinity (Fig. 2).

In the analysis of a dam–reservoir system by perfectly matched
layers, the bounded part of the reservoir is discretized by common
finite elements and a PML region is modeled to absorb waves
propagating towards infinity (Fig. 2). In a previous study where
Basu [29] employed PML in the dam–reservoir systems, boundary
conditions of the PML domain have been neglected which results
in larger domain sizes. Basu concluded that when wave absorp-
tions at the reservoir bottom are to be considered the length of the
reservoir should be at least twice as long as its height to obtain
results with proper accuracy. He also implied that when the

excitation has a vertical component the reservoir should be at least
6 times as long as its height [29]. In such cases, a relatively large part of
the reservoir adjacent to the dam body has to be modeled using
conventional acoustic elements to include the effect of wave absorp-
tions or the vertical excitation at the reservoir bottom in the analysis.
Furthermore, PML media only absorb waves generated in the bounded
domain, hence, a particular approach should be employed to incorpo-
rate incident waves generated in the exterior domain due to vertical
ground motions at the reservoir bottom. In a previous study, we
investigated the time harmonic analysis of dam–reservoir systems by
using perfectly matched layers and demonstrated that applying proper
boundary conditions for the PML area results in considerably smaller
domain sizes [30]. Here, perfectly matched layers introduced by Basu
[29] are adopted in the time domain analysis of dam–reservoir
systems while the bounded part of the reservoir adjacent to the
dam body is reduced by applying boundary conditions of the PML
area. The contribution of this study is threefold:

� Considering the effect of applying Sommerfeld boundary con-
dition at the truncation boundary of the PML area.

� Applying a boundary condition at the bottom of the PML area
to include wave absorptions at the reservoir bottom.

� Proposing a method for the transient analysis of a semi-infinite
reservoir involving vertical ground motions at the reservoir
bottom.

2. Formulation of dam–reservoir systems in time domain

Combining equations governing the solid medium of the dam
body and water in the reservoir results in the formulation of dam–

reservoir systems. Employing finite element method, one can
write the equation of motion of the dam body as follows [31]:

M€rþC_rþKr¼ �MJagþBTP ð1Þ
where M, C and K are the dam0s mass, damping and stiffness
matrices, ag is the ground acceleration vector and r is the vector of
nodal relative displacements. J is a matrix which applies the
ground acceleration to nodes of the model and the interaction
matrix B transforms nodal hydrodynamic pressures P into nodal
forces on the upstream face of the dam.

If water in the reservoir is assumed to be inviscid, linearly
compressible with small irrotational movements, hydrodynamic
pressures can be determined through the following differential
equation and proper boundary conditions:

∇2p� 1
c2

∂2p
∂t2

¼ 0 in the reservoir ð2Þ

p¼ 0 at the water surface ð3aÞ

∇pUnd ¼ �ρ nd U €u on the dam–reservoir interface; ΓI ð3bÞ

Fig. 1. A typical dam–reservoir system containing the dam body, the irregular part
of the reservoir, the semi-infinite channel and sediments at the reservoir bottom.

Fig. 2. Dam–reservoir FE model, the dam body discretized by solid finite elements,
the near-field part of the reservoir discretized by acoustic finite elements, the
far-field part of the reservoir is discretized by PML finite elements.
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